Cargando…
Characteristics of Microbial Community and Function With the Succession of Mangroves
In this study, 16S high-throughput and metagenomic sequencing analyses were employed to explore the changes in microbial community and function with the succession of mangroves (Sonneratia alba, Rhizophora apiculata, and Bruguiera parviflora) along the Merbok river estuary in Malaysia. The sediments...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689078/ https://www.ncbi.nlm.nih.gov/pubmed/34950118 http://dx.doi.org/10.3389/fmicb.2021.764974 |
_version_ | 1784618479410741248 |
---|---|
author | Mai, Zhimao Ye, Mai Wang, Youshao Foong, Swee Yeok Wang, Lin Sun, Fulin Cheng, Hao |
author_facet | Mai, Zhimao Ye, Mai Wang, Youshao Foong, Swee Yeok Wang, Lin Sun, Fulin Cheng, Hao |
author_sort | Mai, Zhimao |
collection | PubMed |
description | In this study, 16S high-throughput and metagenomic sequencing analyses were employed to explore the changes in microbial community and function with the succession of mangroves (Sonneratia alba, Rhizophora apiculata, and Bruguiera parviflora) along the Merbok river estuary in Malaysia. The sediments of the three mangroves harbored their own unique dominant microbial taxa, whereas R. apiculata exhibited the highest microbial diversity. In general, Gammaproteobacteria, Actinobacteria, Alphaproteobacteria, Deltaproteobacteria, and Anaerolineae were the dominant microbial classes, but their abundances varied significantly among the three mangroves. Principal coordinates and redundancy analyses revealed that the specificity of the microbial community was highly correlated with mangrove populations and environmental factors. The results further showed that R. apiculata exhibited the highest carbon-related metabolism, coinciding with the highest organic carbon and microbial diversity. In addition, specific microbial taxa, such as Desulfobacterales and Rhizobiales, contributed the highest functional activities related to carbon metabolism, prokaryote carbon fixation, and methane metabolism. The present results provide a comprehensive understanding of the adaptations and functions of microbes in relation to environmental transition and mangrove succession in intertidal regions. High microbial diversity and carbon metabolism in R. apiculata might in turn facilitate and maintain the formation of climax mangroves in the middle region of the Merbok river estuary. |
format | Online Article Text |
id | pubmed-8689078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86890782021-12-22 Characteristics of Microbial Community and Function With the Succession of Mangroves Mai, Zhimao Ye, Mai Wang, Youshao Foong, Swee Yeok Wang, Lin Sun, Fulin Cheng, Hao Front Microbiol Microbiology In this study, 16S high-throughput and metagenomic sequencing analyses were employed to explore the changes in microbial community and function with the succession of mangroves (Sonneratia alba, Rhizophora apiculata, and Bruguiera parviflora) along the Merbok river estuary in Malaysia. The sediments of the three mangroves harbored their own unique dominant microbial taxa, whereas R. apiculata exhibited the highest microbial diversity. In general, Gammaproteobacteria, Actinobacteria, Alphaproteobacteria, Deltaproteobacteria, and Anaerolineae were the dominant microbial classes, but their abundances varied significantly among the three mangroves. Principal coordinates and redundancy analyses revealed that the specificity of the microbial community was highly correlated with mangrove populations and environmental factors. The results further showed that R. apiculata exhibited the highest carbon-related metabolism, coinciding with the highest organic carbon and microbial diversity. In addition, specific microbial taxa, such as Desulfobacterales and Rhizobiales, contributed the highest functional activities related to carbon metabolism, prokaryote carbon fixation, and methane metabolism. The present results provide a comprehensive understanding of the adaptations and functions of microbes in relation to environmental transition and mangrove succession in intertidal regions. High microbial diversity and carbon metabolism in R. apiculata might in turn facilitate and maintain the formation of climax mangroves in the middle region of the Merbok river estuary. Frontiers Media S.A. 2021-12-07 /pmc/articles/PMC8689078/ /pubmed/34950118 http://dx.doi.org/10.3389/fmicb.2021.764974 Text en Copyright © 2021 Mai, Ye, Wang, Foong, Wang, Sun and Cheng. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Mai, Zhimao Ye, Mai Wang, Youshao Foong, Swee Yeok Wang, Lin Sun, Fulin Cheng, Hao Characteristics of Microbial Community and Function With the Succession of Mangroves |
title | Characteristics of Microbial Community and Function With the Succession of Mangroves |
title_full | Characteristics of Microbial Community and Function With the Succession of Mangroves |
title_fullStr | Characteristics of Microbial Community and Function With the Succession of Mangroves |
title_full_unstemmed | Characteristics of Microbial Community and Function With the Succession of Mangroves |
title_short | Characteristics of Microbial Community and Function With the Succession of Mangroves |
title_sort | characteristics of microbial community and function with the succession of mangroves |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689078/ https://www.ncbi.nlm.nih.gov/pubmed/34950118 http://dx.doi.org/10.3389/fmicb.2021.764974 |
work_keys_str_mv | AT maizhimao characteristicsofmicrobialcommunityandfunctionwiththesuccessionofmangroves AT yemai characteristicsofmicrobialcommunityandfunctionwiththesuccessionofmangroves AT wangyoushao characteristicsofmicrobialcommunityandfunctionwiththesuccessionofmangroves AT foongsweeyeok characteristicsofmicrobialcommunityandfunctionwiththesuccessionofmangroves AT wanglin characteristicsofmicrobialcommunityandfunctionwiththesuccessionofmangroves AT sunfulin characteristicsofmicrobialcommunityandfunctionwiththesuccessionofmangroves AT chenghao characteristicsofmicrobialcommunityandfunctionwiththesuccessionofmangroves |