Cargando…

Remote cortical perturbation dynamically changes the network solutions to given tactile inputs in neocortical neurons

The neocortex has a globally encompassing network structure, which for each given input constrains the possible combinations of neuronal activations across it. Hence, its network contains solutions. But in addition, the cortex has an ever-changing multidimensional internal state, causing each given...

Descripción completa

Detalles Bibliográficos
Autores principales: Etemadi, Leila, Enander, Jonas M.D., Jörntell, Henrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689199/
https://www.ncbi.nlm.nih.gov/pubmed/34977509
http://dx.doi.org/10.1016/j.isci.2021.103557
Descripción
Sumario:The neocortex has a globally encompassing network structure, which for each given input constrains the possible combinations of neuronal activations across it. Hence, its network contains solutions. But in addition, the cortex has an ever-changing multidimensional internal state, causing each given input to result in a wide range of specific neuronal activations. Here we use intracellular recordings in somatosensory cortex (SI) neurons of anesthetized rats to show that remote, subthreshold intracortical electrical perturbation can impact such constraints on the responses to a set of spatiotemporal tactile input patterns. Whereas each given input pattern normally induces a wide set of preferred response states, when combined with cortical perturbation response states that did not otherwise occur were induced and consequently made other response states less likely. The findings indicate that the physiological network structure can dynamically change as the state of any given cortical region changes, thereby enabling a rich, multifactorial, perceptual capability.