Cargando…

A new method to localise and quantify oxidative stress in live juvenile mussels

Stress and survival of the juvenile New Zealand green-lipped mussel, Perna canaliculus, is a poorly understood bottleneck in the ecological and economic performance of a significant aquaculture crop. This species was therefore selected as a model organism for the development of a new method to quant...

Descripción completa

Detalles Bibliográficos
Autores principales: Delorme, Natalí J., Schmidt, Alfonso J., Zamora, Leonardo N., Burritt, David J., Ragg, Norman L. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689488/
https://www.ncbi.nlm.nih.gov/pubmed/34842270
http://dx.doi.org/10.1242/bio.059030
Descripción
Sumario:Stress and survival of the juvenile New Zealand green-lipped mussel, Perna canaliculus, is a poorly understood bottleneck in the ecological and economic performance of a significant aquaculture crop. This species was therefore selected as a model organism for the development of a new method to quantify oxidative stress in whole individuals. An in vivo ROS-activated stain (CellROX™) was administered to anaesthetised, translucent juveniles that were subsequently formaldehyde fixed and then visualised using confocal microscopy. Subsequent application of image analysis to quantifying ROS-positive tissue areas was successfully used to detect stress differences in juvenile mussels exposed to varying levels of emersion. This integrated method can be used to localise and quantify ROS production in individual translucent bivalve life stages (larval and juvenile), while relative stability following fixation greatly expands potential practical field applications. This article has an associated First Person interview with the first and third authors of the paper.