Cargando…

Buchwald–Hartwig Amination of Aryl Halides with Heterocyclic Amines in the Synthesis of Highly Fluorescent Benzodifuran-Based Star-Shaped Organic Semiconductors

[Image: see text] The study of palladium-catalyzed amination of bromobenzene with aromatic and heterocyclic amines, widely used in the synthesis of organic semiconductors, was performed. The best conditions for the coupling of aryl bromides with carbazole, diphenylamine, phenoxazine, phenothiazine,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bosiak, Mariusz J., Zielińska, Alicja A., Trzaska, Piotr, Kędziera, Dariusz, Adams, Jörg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689646/
https://www.ncbi.nlm.nih.gov/pubmed/34860523
http://dx.doi.org/10.1021/acs.joc.1c01583
Descripción
Sumario:[Image: see text] The study of palladium-catalyzed amination of bromobenzene with aromatic and heterocyclic amines, widely used in the synthesis of organic semiconductors, was performed. The best conditions for the coupling of aryl bromides with carbazole, diphenylamine, phenoxazine, phenothiazine, 9,9-dimethyl-9,10-dihydroacridine, and their derivatives have been developed. Based on the results, nine new star-shaped organic semiconductors, exhibiting up to 100% fluorescent quantum yield in the 400–550 nm range, have been synthesized in good yields. The TDDFT calculations of the absorption spectra revealed a good correlation with experimental results and slight solvatochromic effects with a change in the polarity of the solvent.