Cargando…
Urban Particulate Matter Impairment of Airway Surface Liquid–Mediated Coronavirus Inactivation
Air pollution particulate matter (PM) is associated with SARS-CoV-2 infection and severity, although mechanistic studies are lacking. We tested whether airway surface liquid (ASL) from primary human airway epithelial cells is antiviral against SARS-CoV-2 and human alphacoronavirus 229E (CoV-229E) (r...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689861/ https://www.ncbi.nlm.nih.gov/pubmed/34734257 http://dx.doi.org/10.1093/infdis/jiab545 |
Sumario: | Air pollution particulate matter (PM) is associated with SARS-CoV-2 infection and severity, although mechanistic studies are lacking. We tested whether airway surface liquid (ASL) from primary human airway epithelial cells is antiviral against SARS-CoV-2 and human alphacoronavirus 229E (CoV-229E) (responsible for common colds), and whether PM (urban, indoor air pollution [IAP], volcanic ash) affected ASL antiviral activity. ASL inactivated SARS-CoV-2 and CoV-229E. Independently, urban PM also decreased SARS-CoV-2 and CoV-229E infection, and IAP PM decreased CoV-229E infection. However, in combination, urban PM impaired ASL’s antiviral activity against both viruses, and the same effect occurred for IAP PM and ash against SARS-CoV-2, suggesting that PM may enhance SARS-CoV-2 infection. |
---|