Cargando…

SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions

SCoV2-MD (www.scov2-md.org) is a new online resource that systematically organizes atomistic simulations of the SARS-CoV-2 proteome. The database includes simulations produced by leading groups using molecular dynamics (MD) methods to investigate the structure-dynamics-function relationships of vira...

Descripción completa

Detalles Bibliográficos
Autores principales: Torrens-Fontanals, Mariona, Peralta-García, Alejandro, Talarico, Carmine, Guixà-González, Ramon, Giorgino, Toni, Selent, Jana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689960/
https://www.ncbi.nlm.nih.gov/pubmed/34761257
http://dx.doi.org/10.1093/nar/gkab977
_version_ 1784618602623664128
author Torrens-Fontanals, Mariona
Peralta-García, Alejandro
Talarico, Carmine
Guixà-González, Ramon
Giorgino, Toni
Selent, Jana
author_facet Torrens-Fontanals, Mariona
Peralta-García, Alejandro
Talarico, Carmine
Guixà-González, Ramon
Giorgino, Toni
Selent, Jana
author_sort Torrens-Fontanals, Mariona
collection PubMed
description SCoV2-MD (www.scov2-md.org) is a new online resource that systematically organizes atomistic simulations of the SARS-CoV-2 proteome. The database includes simulations produced by leading groups using molecular dynamics (MD) methods to investigate the structure-dynamics-function relationships of viral proteins. SCoV2-MD cross-references the molecular data with the pandemic evolution by tracking all available variants sequenced during the pandemic and deposited in the GISAID resource. SCoV2-MD enables the interactive analysis of the deposited trajectories through a web interface, which enables users to search by viral protein, isolate, phylogenetic attributes, or specific point mutation. Each mutation can then be analyzed interactively combining static (e.g. a variety of amino acid substitution penalties) and dynamic (time-dependent data derived from the dynamics of the local geometry) scores. Dynamic scores can be computed on the basis of nine non-covalent interaction types, including steric properties, solvent accessibility, hydrogen bonding, and other types of chemical interactions. Where available, experimental data such as antibody escape and change in binding affinities from deep mutational scanning experiments are also made available. All metrics can be combined to build predefined or custom scores to interrogate the impact of evolving variants on protein structure and function.
format Online
Article
Text
id pubmed-8689960
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-86899602022-01-05 SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions Torrens-Fontanals, Mariona Peralta-García, Alejandro Talarico, Carmine Guixà-González, Ramon Giorgino, Toni Selent, Jana Nucleic Acids Res NAR Breakthrough Article SCoV2-MD (www.scov2-md.org) is a new online resource that systematically organizes atomistic simulations of the SARS-CoV-2 proteome. The database includes simulations produced by leading groups using molecular dynamics (MD) methods to investigate the structure-dynamics-function relationships of viral proteins. SCoV2-MD cross-references the molecular data with the pandemic evolution by tracking all available variants sequenced during the pandemic and deposited in the GISAID resource. SCoV2-MD enables the interactive analysis of the deposited trajectories through a web interface, which enables users to search by viral protein, isolate, phylogenetic attributes, or specific point mutation. Each mutation can then be analyzed interactively combining static (e.g. a variety of amino acid substitution penalties) and dynamic (time-dependent data derived from the dynamics of the local geometry) scores. Dynamic scores can be computed on the basis of nine non-covalent interaction types, including steric properties, solvent accessibility, hydrogen bonding, and other types of chemical interactions. Where available, experimental data such as antibody escape and change in binding affinities from deep mutational scanning experiments are also made available. All metrics can be combined to build predefined or custom scores to interrogate the impact of evolving variants on protein structure and function. Oxford University Press 2021-11-11 /pmc/articles/PMC8689960/ /pubmed/34761257 http://dx.doi.org/10.1093/nar/gkab977 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle NAR Breakthrough Article
Torrens-Fontanals, Mariona
Peralta-García, Alejandro
Talarico, Carmine
Guixà-González, Ramon
Giorgino, Toni
Selent, Jana
SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions
title SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions
title_full SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions
title_fullStr SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions
title_full_unstemmed SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions
title_short SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions
title_sort scov2-md: a database for the dynamics of the sars-cov-2 proteome and variant impact predictions
topic NAR Breakthrough Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689960/
https://www.ncbi.nlm.nih.gov/pubmed/34761257
http://dx.doi.org/10.1093/nar/gkab977
work_keys_str_mv AT torrensfontanalsmariona scov2mdadatabaseforthedynamicsofthesarscov2proteomeandvariantimpactpredictions
AT peraltagarciaalejandro scov2mdadatabaseforthedynamicsofthesarscov2proteomeandvariantimpactpredictions
AT talaricocarmine scov2mdadatabaseforthedynamicsofthesarscov2proteomeandvariantimpactpredictions
AT guixagonzalezramon scov2mdadatabaseforthedynamicsofthesarscov2proteomeandvariantimpactpredictions
AT giorginotoni scov2mdadatabaseforthedynamicsofthesarscov2proteomeandvariantimpactpredictions
AT selentjana scov2mdadatabaseforthedynamicsofthesarscov2proteomeandvariantimpactpredictions