Cargando…
Bayesian spatio-temporal distributed lag modeling for delayed climatic effects on sparse malaria incidence data
BACKGROUND: In many areas of the Greater Mekong Subregion (GMS), malaria endemic regions have shrunk to patches of predominantly low-transmission. With a regional goal of elimination by 2030, it is important to use appropriate methods to analyze and predict trends in incidence in these remaining tra...
Autores principales: | Rotejanaprasert, Chawarat, Ekapirat, Nattwut, Sudathip, Prayuth, Maude, Richard J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8690908/ https://www.ncbi.nlm.nih.gov/pubmed/34930128 http://dx.doi.org/10.1186/s12874-021-01480-x |
Ejemplares similares
-
Bayesian spatiotemporal modeling with sliding windows to correct reporting delays for real-time dengue surveillance in Thailand
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2020) -
Bayesian Spatio-Temporal Prediction and Counterfactual Generation: An Application in Non-Pharmaceutical Interventions in COVID-19
por: Lawson, Andrew, et al.
Publicado: (2023) -
Low parasite connectivity among three malaria hotspots in Thailand
por: Chang, Hsiao-Han, et al.
Publicado: (2021) -
Forest malaria and prospects for anti-malarial chemoprophylaxis among forest goers: findings from a qualitative study in Thailand
por: Jongdeepaisal, Monnaphat, et al.
Publicado: (2022) -
Spatiotemporal reproduction number with Bayesian model selection for evaluation of emerging infectious disease transmissibility: an application to COVID-19 national surveillance data
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2023)