Cargando…
Machine Learning Methodologies for Prediction of Rhythm-Control Strategy in Patients Diagnosed With Atrial Fibrillation: Observational, Retrospective, Case-Control Study
BACKGROUND: The identification of an appropriate rhythm management strategy for patients diagnosed with atrial fibrillation (AF) remains a major challenge for providers. Although clinical trials have identified subgroups of patients in whom a rate- or rhythm-control strategy might be indicated to im...
Autores principales: | Kim, Rachel S, Simon, Steven, Powers, Brett, Sandhu, Amneet, Sanchez, Jose, Borne, Ryan T, Tumolo, Alexis, Zipse, Matthew, West, J Jason, Aleong, Ryan, Tzou, Wendy, Rosenberg, Michael A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691402/ https://www.ncbi.nlm.nih.gov/pubmed/34874889 http://dx.doi.org/10.2196/29225 |
Ejemplares similares
-
Evaluation of Quantitative Decision‐Making for Rhythm Management of Atrial Fibrillation Using Tabular Q‐Learning
por: Barrett, Christopher D., et al.
Publicado: (2023) -
Does Coffee Reduce the Risk of Atrial Fibrillation?
por: Aleong, Ryan G., et al.
Publicado: (2019) -
Open surgical ablation of ventricular tachycardia: Utility and feasibility of contemporary mapping and ablation tools
por: Kunkel, Megan, et al.
Publicado: (2021) -
Double jeopardy: long QT3 and Brugada syndromes
por: Sandhu, Amneet, et al.
Publicado: (2017) -
High-power bipolar ablation for incessant ventricular tachycardia utilizing a deep midmyocardial septal circuit
por: Sauer, William H., et al.
Publicado: (2015)