Cargando…
De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based Graph Regularized Matrix Factorization
Application of artificial intelligence (AI) in precision oncology typically involves predicting whether the cancer cells of a patient (previously unseen by AI models) will respond to any of a set of existing anticancer drugs, based on responses of previous training cell samples to those drugs. To ex...
Autores principales: | Ren, Shuangxia, Tao, Yifeng, Yu, Ke, Xue, Yifan, Schwartz, Russell, Lu, Xinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691529/ https://www.ncbi.nlm.nih.gov/pubmed/34890156 |
Ejemplares similares
-
An interpretable deep learning framework for genome-informed precision oncology
por: Ren, Shuangxia, et al.
Publicado: (2023) -
Revealing the Impact of Genomic Alterations on Cancer Cell Signaling with an Interpretable Deep Learning Model
por: Young, Jonathan D., et al.
Publicado: (2023) -
Anticancer Drug Response Prediction in Cell Lines Using Weighted Graph Regularized Matrix Factorization
por: Guan, Na-Na, et al.
Publicado: (2019) -
Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers
por: Tao, Yifeng, et al.
Publicado: (2022) -
Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization
por: Guan, Naiyang, et al.
Publicado: (2013)