Cargando…

Identification of starch candidate genes using SLAF-seq and BSA strategies and development of related SNP-CAPS markers in tetraploid potato

Potato starch is an essential nutrient for humans and is widely used worldwide. Locating relevant genomic regions, mining stable genes and developing candidate gene markers can promote the breeding of new high-starch potato varieties. A total of 106 F(1) individuals and their parents (YSP-4 × MIN-02...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jiaqi, Yu, Xiaoxia, Zhang, Sheng, Yu, Zhuo, Li, Jingwei, Jin, Xinghong, Zhang, Xia, Yang, Dongsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691606/
https://www.ncbi.nlm.nih.gov/pubmed/34932571
http://dx.doi.org/10.1371/journal.pone.0261403
Descripción
Sumario:Potato starch is an essential nutrient for humans and is widely used worldwide. Locating relevant genomic regions, mining stable genes and developing candidate gene markers can promote the breeding of new high-starch potato varieties. A total of 106 F(1) individuals and their parents (YSP-4 × MIN-021) were used as test materials, from which 20 plants with high starch content and 20 with low starch content were selected to construct DNA pools for site-specific amplified fragment sequencing (SLAF-seq) and bulked segregation analysis (BSA). A genomic region related to the starch traits was first identified in the 0–5.62 Mb of chromosome 2 in tetraploid potato. In this section, a total of 41 non-synonymous genes, which were considered as candidate genes related to the starch trait, were annotated through a basic local alignment search tool (BLAST) search of multiple databases. Six candidate genes for starch (PGSC0003DMG400017793, PGSC0003DMG400035245, PGSC0003DMG400036713, PGSC0003DMG400040452, PGSC0003DMG400006636 and PGSC0003DMG400044547) were further explored. In addition, cleaved amplified polymorphic sequence (CAPS) markers were developed based on single nucleotide polymorphism (SNP) sites associated with the starch candidate genes. SNP-CAPS markers chr2-CAPS6 and chr2-CAPS21 were successfully developed and validated with the F(2) population and 24 tetraploid potato varieties (lines). Functional analysis and cloning of the candidate genes associated with potato starch will be performed in further research, and the SNP-CAPS markers chr2-CAPS6 and chr2-CAPS21 can be further used in marker-assisted selection breeding of tetraploid potato varieties with high starch content.