Cargando…
Malicious Code Variant Identification Based on Multiscale Feature Fusion CNNs
The increasing volume and types of malwares bring a great threat to network security. The malware binary detection with deep convolutional neural networks (CNNs) has been proved to be an effective method. However, the existing malware classification methods based on CNNs are unsatisfactory to this d...
Autores principales: | Wang, Shuo, Wang, Jian, Song, Yafei, Li, Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691988/ https://www.ncbi.nlm.nih.gov/pubmed/34950195 http://dx.doi.org/10.1155/2021/1070586 |
Ejemplares similares
-
Multiscale CNNs for Brain Tumor Segmentation and Diagnosis
por: Zhao, Liya, et al.
Publicado: (2016) -
Malware: fighting malicious code
por: Skoudis, Ed, et al.
Publicado: (2004) -
FUSI-CAD: Coronavirus (COVID-19) diagnosis based on the fusion of CNNs and handcrafted features
por: Ragab, Dina A., et al.
Publicado: (2020) -
Malicious mobile code: virus protection for Windows
por: Grimes, Roger A
Publicado: (2001) -
Malware Forensics: Investigating and Analyzing Malicious Code
por: Aquilina, James M, et al.
Publicado: (2008)