Cargando…

An Ensemble Deep Learning Model for Automatic Modulation Classification in 5G and Beyond IoT Networks

With rapid advancement in artificial intelligence (AI) and machine learning (ML), automatic modulation classification (AMC) using deep learning (DL) techniques has become very popular. This is even more relevant for Internet of things (IoT)-assisted wireless systems. This paper presents a lightweigh...

Descripción completa

Detalles Bibliográficos
Autores principales: Roy, Chirag, Yadav, Satyendra Singh, Pal, Vipin, Singh, Mangal, Patra, Sarat Kumar, Sinha, G. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691989/
https://www.ncbi.nlm.nih.gov/pubmed/34950200
http://dx.doi.org/10.1155/2021/5047355
Descripción
Sumario:With rapid advancement in artificial intelligence (AI) and machine learning (ML), automatic modulation classification (AMC) using deep learning (DL) techniques has become very popular. This is even more relevant for Internet of things (IoT)-assisted wireless systems. This paper presents a lightweight, ensemble model with convolution, long short term memory (LSTM), and gated recurrent unit (GRU) layers. The proposed model is termed as deep recurrent convoluted network with additional gated layer (DRCaG). It has been tested on a dataset derived from the RadioML2016(b) and comprises of 8 different modulation types named as BPSK, QPSK, 8-PSK, 16-QAM, 4-PAM, CPFSK, GFSK, and WBFM. The performance of the proposed model has been presented through extensive simulation in terms of training loss, accuracy, and confusion matrix with variable signal to noise ratio (SNR) ranging from −20 dB to +20 dB and it demonstrates the superiority of DRCaG vis-a-vis existing ones.