Cargando…
Deep learning for accurately recognizing common causes of shoulder pain on radiographs
OBJECTIVE: Training a convolutional neural network (CNN) to detect the most common causes of shoulder pain on plain radiographs and to assess its potential value in serving as an assistive device to physicians. MATERIALS AND METHODS: We used a CNN of the ResNet-50 architecture which was trained on 2...
Autores principales: | Grauhan, Nils F., Niehues, Stefan M., Gaudin, Robert A., Keller, Sarah, Vahldiek, Janis L., Adams, Lisa C., Bressem, Keno K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692302/ https://www.ncbi.nlm.nih.gov/pubmed/33611622 http://dx.doi.org/10.1007/s00256-021-03740-9 |
Ejemplares similares
-
Comparing different deep learning architectures for classification of chest radiographs
por: Bressem, Keno K., et al.
Publicado: (2020) -
Evaluation of potential tissue heating during percutaneous drill-assisted bone sampling in an in vivo porcine study
por: Niehues, Stefan M., et al.
Publicado: (2021) -
Do submillisievert-chest CT protocols impact diagnostic quality in suspected COVID-19 patients?
por: Thieß, Hans-Martin, et al.
Publicado: (2022) -
Deep learning for detection of radiographic sacroiliitis: achieving expert-level performance
por: Bressem, Keno K., et al.
Publicado: (2021) -
Is lung density associated with severity of COVID-19?
por: Bressem, Keno K., et al.
Publicado: (2020)