Cargando…
Weakly-supervised deep learning for ultrasound diagnosis of breast cancer
Conventional deep learning (DL) algorithm requires full supervision of annotating the region of interest (ROI) that is laborious and often biased. We aimed to develop a weakly-supervised DL algorithm that diagnosis breast cancer at ultrasound without image annotation. Weakly-supervised DL algorithms...
Autores principales: | Kim, Jaeil, Kim, Hye Jung, Kim, Chanho, Lee, Jin Hwa, Kim, Keum Won, Park, Young Mi, Kim, Hye Won, Ki, So Yeon, Kim, You Me, Kim, Won Hwa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692405/ https://www.ncbi.nlm.nih.gov/pubmed/34934144 http://dx.doi.org/10.1038/s41598-021-03806-7 |
Ejemplares similares
-
Artificial intelligence in breast ultrasonography
por: Kim, Jaeil, et al.
Publicado: (2021) -
A Study on the Effectiveness of Deep Learning-Based Anomaly Detection Methods for Breast Ultrasonography
por: Yun, Changhee, et al.
Publicado: (2023) -
A Case Study of Quantizing Convolutional Neural Networks for Fast Disease Diagnosis on Portable Medical Devices
por: Garifulla, Mukhammed, et al.
Publicado: (2021) -
Interobserver agreement in breast ultrasound categorization in the Mammography and Ultrasonography Study for Breast Cancer Screening Effectiveness (MUST-BE) trial: results of a preliminary study
por: Choi, Eun Jung, et al.
Publicado: (2019) -
Effect of Different Types of Mammography Equipment on Screening Outcomes: A Report by the Alliance for Breast Cancer Screening in Korea
por: Choi, Bo Hwa, et al.
Publicado: (2019)