Cargando…
VSUGAN unify voice style based on spectrogram and generated adversarial networks
In course recording, the audio recorded in different pickups and environments can be clearly distinguished and cause style differences after splicing, which influences the quality of recorded courses. A common way to improve the above situation is to use voice style unification. In the present study...
Autores principales: | Ouyang, Tongjie, Yang, Zhijun, Xie, Huilong, Hu, Tianlin, Liu, Qingmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692613/ https://www.ncbi.nlm.nih.gov/pubmed/34934100 http://dx.doi.org/10.1038/s41598-021-03770-2 |
Ejemplares similares
-
Style-based quantum generative adversarial networks for Monte Carlo events
por: Bravo-Prieto, Carlos, et al.
Publicado: (2021) -
Unified Generative Adversarial Networks for Multidomain Fingerprint Presentation Attack Detection
por: Sandouka, Soha B., et al.
Publicado: (2021) -
Traffic Accident Data Generation Based on Improved Generative Adversarial Networks
por: Chen, Zhijun, et al.
Publicado: (2021) -
Synthesizing realistic high-resolution retina image by style-based generative adversarial network and its utilization
por: Kim, Mingyu, et al.
Publicado: (2022) -
Generation of highly realistic microstructural images of alloys from limited data with a style-based generative adversarial network
por: Lambard, Guillaume, et al.
Publicado: (2023)