Cargando…
Integrative measurement analysis via machine learning descriptor selection for investigating physical properties of biopolymers in hairs
Integrative measurement analysis of complex subjects, such as polymers is a major challenge to obtain comprehensive understanding of the properties. In this study, we describe analytical strategies to extract and selectively associate compositional information measured by multiple analytical techniq...
Autores principales: | Takamura, Ayari, Tsukamoto, Kaede, Sakata, Kenji, Kikuchi, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692616/ https://www.ncbi.nlm.nih.gov/pubmed/34934112 http://dx.doi.org/10.1038/s41598-021-03793-9 |
Ejemplares similares
-
Fish ecotyping based on machine learning and inferred network analysis of chemical and physical properties
por: Wei, Feifei, et al.
Publicado: (2021) -
Naturally-meaningful and efficient descriptors: machine learning of material properties based on robust one-shot ab initio descriptors
por: Tawfik, Sherif Abdulkader, et al.
Publicado: (2022) -
Descriptor selection for predicting interfacial thermal resistance by machine learning methods
por: Tian, Xiaojuan, et al.
Publicado: (2021) -
Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis
por: Amar, Yehia, et al.
Publicado: (2019) -
Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors
por: Yang, Ze, et al.
Publicado: (2022)