Cargando…

Fractal–fractional and stochastic analysis of norovirus transmission epidemic model with vaccination effects

In this paper, we investigate an norovirus (NoV) epidemic model with stochastic perturbation and the new definition of a nonlocal fractal–fractional derivative in the Atangana–Baleanu–Caputo (ABC) sense. First we present some basic properties including equilibria and the basic reproduction number of...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Ting, Liu, Peijiang, Din, Anwarud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692620/
https://www.ncbi.nlm.nih.gov/pubmed/34934111
http://dx.doi.org/10.1038/s41598-021-03732-8
Descripción
Sumario:In this paper, we investigate an norovirus (NoV) epidemic model with stochastic perturbation and the new definition of a nonlocal fractal–fractional derivative in the Atangana–Baleanu–Caputo (ABC) sense. First we present some basic properties including equilibria and the basic reproduction number of the model. Further, we analyze that the proposed stochastic system has a unique global positive solution. Next, the sufficient conditions of the extinction and the existence of a stationary probability measure for the disease are established. Furthermore, the fractal–fractional dynamics of the proposed model under Atangana–Baleanu–Caputo (ABC) derivative of fractional order “[Formula: see text] ” and fractal dimension “[Formula: see text] ” have also been addressed. Besides, coupling the non-linear functional analysis with fixed point theory, the qualitative analysis of the proposed model has been performed. The numerical simulations are carried out to demonstrate the analytical results. It is believed that this study will comprehensively strengthen the theoretical basis for comprehending the dynamics of the worldwide contagious diseases.