Cargando…
Morphological features of single cells enable accurate automated classification of cancer from non-cancer cell lines
Accurate cancer detection and diagnosis is of utmost importance for reliable drug-response prediction. Successful cancer characterization relies on both genetic analysis and histological scans from tumor biopsies. It is known that the cytoskeleton is significantly altered in cancer, as cellular stru...
Autores principales: | Mousavikhamene, Zeynab, Sykora, Daniel J., Mrksich, Milan, Bagheri, Neda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692621/ https://www.ncbi.nlm.nih.gov/pubmed/34934149 http://dx.doi.org/10.1038/s41598-021-03813-8 |
Ejemplares similares
-
Deep ensemble learning enables highly accurate classification of stored red blood cell morphology
por: Routt, Austin H., et al.
Publicado: (2023) -
Nanopatterned Extracellular Matrices Enable Cell-Based
Assays with a Mass Spectrometric Readout
por: Cabezas, Maria D., et al.
Publicado: (2017) -
Machine Learning on Signal-to-Noise Ratios Improves
Peptide Array Design in SAMDI Mass Spectrometry
por: Xue, Albert Y., et al.
Publicado: (2017) -
Machine Learning Based on Morphological Features Enables Classification of Primary Intestinal T-Cell Lymphomas
por: Yu, Wei-Hsiang, et al.
Publicado: (2021) -
Automated classification of breast cancer morphology in histopathological images
por: Ojansivu, Ville, et al.
Publicado: (2013)