Cargando…

Effect of non-pharmacological interventions on the COVID-19 epidemic in Saudi Arabia

We quantified the potential impact of different social distancing and self-isolation scenarios on the coronavirus disease 2019 (COVID-19) pandemic trajectory in Saudi Arabia and compared the modelling results to the confirmed epidemic trajectory. Using the susceptible, exposed, infected, quarantined...

Descripción completa

Detalles Bibliográficos
Autores principales: AlJohani, Naif I., Mutai, Kipkoech
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692846/
https://www.ncbi.nlm.nih.gov/pubmed/34839841
http://dx.doi.org/10.1017/S0950268821002612
Descripción
Sumario:We quantified the potential impact of different social distancing and self-isolation scenarios on the coronavirus disease 2019 (COVID-19) pandemic trajectory in Saudi Arabia and compared the modelling results to the confirmed epidemic trajectory. Using the susceptible, exposed, infected, quarantined and self-isolated, requiring hospitalisation, recovered/immune individuals, fatalities model, we assessed the impact of a non-pharmacological interventions’ subset. An unmitigated scenario (baseline), mitigation scenarios (25% reduction in social contact/twofold increase in self-isolation) and enhanced mitigation scenarios (50% reduction in social contact/twofold increase in self-isolation) were assessed and compared to the actual epidemic trajectory. For the unmitigated scenario, mitigation scenarios, enhanced mitigation scenarios and actual observed epidemic, the peak daily incidence rates (per 10 000 population) were 77.00, 16.00, 9.00 and 1.14 on days 71, 54, 35 and 136, respectively. The peak fatality rates were 35.00, 13.00, 5.00 and 0.016 on days 150, 125, 60 and 155, respectively. The R0 was 1.15, 1.14, 1.22 and 2.50, respectively. Aggressive implementation of social distancing and self-isolation contributed to the downward trend of the disease. We recommend using extensive models that comprehensively consider the natural history of COVID-19, social and behavioural patterns, age-specific data, actual network topology and population to elucidate the epidemic's magnitude and trajectory.