Cargando…

Water column compensation workflow for hyperspectral imaging data

Our article describes a data processing workflow for hyperspectral imaging data to compensate for the water column in shallow, clear to moderate • Workflow calculates depth invariant indices for hyperspectral imaging data to compensate for the water column in shallow, clear to moderate optical water...

Descripción completa

Detalles Bibliográficos
Autores principales: Inamdar, Deep, Rowan, Gillian S.L., Kalacska, Margaret, Arroyo-Mora, J. Pablo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693006/
https://www.ncbi.nlm.nih.gov/pubmed/34984174
http://dx.doi.org/10.1016/j.mex.2021.101601
_version_ 1784619053917143040
author Inamdar, Deep
Rowan, Gillian S.L.
Kalacska, Margaret
Arroyo-Mora, J. Pablo
author_facet Inamdar, Deep
Rowan, Gillian S.L.
Kalacska, Margaret
Arroyo-Mora, J. Pablo
author_sort Inamdar, Deep
collection PubMed
description Our article describes a data processing workflow for hyperspectral imaging data to compensate for the water column in shallow, clear to moderate • Workflow calculates depth invariant indices for hyperspectral imaging data to compensate for the water column in shallow, clear to moderate optical water types. • The applied principal component transformation generates features that account for a substantial amount of the variance from the depth invariant indices while reducing dimensionality. • The output (both depth invariant index image and principal component image) allows for the analysis of bottom type in shallow, clear to moderate optical water types.
format Online
Article
Text
id pubmed-8693006
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86930062022-01-03 Water column compensation workflow for hyperspectral imaging data Inamdar, Deep Rowan, Gillian S.L. Kalacska, Margaret Arroyo-Mora, J. Pablo MethodsX Method Article Our article describes a data processing workflow for hyperspectral imaging data to compensate for the water column in shallow, clear to moderate • Workflow calculates depth invariant indices for hyperspectral imaging data to compensate for the water column in shallow, clear to moderate optical water types. • The applied principal component transformation generates features that account for a substantial amount of the variance from the depth invariant indices while reducing dimensionality. • The output (both depth invariant index image and principal component image) allows for the analysis of bottom type in shallow, clear to moderate optical water types. Elsevier 2021-12-12 /pmc/articles/PMC8693006/ /pubmed/34984174 http://dx.doi.org/10.1016/j.mex.2021.101601 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Method Article
Inamdar, Deep
Rowan, Gillian S.L.
Kalacska, Margaret
Arroyo-Mora, J. Pablo
Water column compensation workflow for hyperspectral imaging data
title Water column compensation workflow for hyperspectral imaging data
title_full Water column compensation workflow for hyperspectral imaging data
title_fullStr Water column compensation workflow for hyperspectral imaging data
title_full_unstemmed Water column compensation workflow for hyperspectral imaging data
title_short Water column compensation workflow for hyperspectral imaging data
title_sort water column compensation workflow for hyperspectral imaging data
topic Method Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693006/
https://www.ncbi.nlm.nih.gov/pubmed/34984174
http://dx.doi.org/10.1016/j.mex.2021.101601
work_keys_str_mv AT inamdardeep watercolumncompensationworkflowforhyperspectralimagingdata
AT rowangilliansl watercolumncompensationworkflowforhyperspectralimagingdata
AT kalacskamargaret watercolumncompensationworkflowforhyperspectralimagingdata
AT arroyomorajpablo watercolumncompensationworkflowforhyperspectralimagingdata