Cargando…

Discovery of Dome‐Shaped Superconducting Phase and Anisotropic Transport in a van der Waals Layered Candidate NbIrTe(4) under Pressure

The unique electronic structure and crystal structure driven by external pressure in transition metal tellurides (TMTs) can host unconventional quantum states. Here, the discovery of pressure‐induced phase transition at ≈2 GPa, and dome‐shaped superconducting phase emerged in van der Waals layered N...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Meiling, Yu, Peng, Fan, Changzeng, Li, Qiang, Kong, Panlong, Shen, Zhiwei, Qin, Xiaomei, Chi, Zhenhua, Jin, Changqing, Liu, Guangtong, Zhong, Guyue, Xu, Gang, Liu, Zheng, Zhu, Jinlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693038/
https://www.ncbi.nlm.nih.gov/pubmed/34723437
http://dx.doi.org/10.1002/advs.202103250
_version_ 1784619060630126592
author Jin, Meiling
Yu, Peng
Fan, Changzeng
Li, Qiang
Kong, Panlong
Shen, Zhiwei
Qin, Xiaomei
Chi, Zhenhua
Jin, Changqing
Liu, Guangtong
Zhong, Guyue
Xu, Gang
Liu, Zheng
Zhu, Jinlong
author_facet Jin, Meiling
Yu, Peng
Fan, Changzeng
Li, Qiang
Kong, Panlong
Shen, Zhiwei
Qin, Xiaomei
Chi, Zhenhua
Jin, Changqing
Liu, Guangtong
Zhong, Guyue
Xu, Gang
Liu, Zheng
Zhu, Jinlong
author_sort Jin, Meiling
collection PubMed
description The unique electronic structure and crystal structure driven by external pressure in transition metal tellurides (TMTs) can host unconventional quantum states. Here, the discovery of pressure‐induced phase transition at ≈2 GPa, and dome‐shaped superconducting phase emerged in van der Waals layered NbIrTe(4) is reported. The highest critical temperature (T (c)) is ≈5.8 K at pressure of ≈16 GPa, where the interlayered Te–Te covalent bonds form simultaneously derived from the synchrotron diffraction data, indicating the hosting structure of superconducting evolved from low‐pressure two‐dimensional (2D) phase to three‐dimensional (3D) structure with pressure higher than 30 GPa. Strikingly, the authors have found an anisotropic transport in the vicinity of the superconducting state, suggesting the emergence of a “stripe”‐like phase. The dome‐shaped superconducting phase and anisotropic transport are possibly due to the spatial modulation of interlayer Josephson coupling .
format Online
Article
Text
id pubmed-8693038
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-86930382022-01-03 Discovery of Dome‐Shaped Superconducting Phase and Anisotropic Transport in a van der Waals Layered Candidate NbIrTe(4) under Pressure Jin, Meiling Yu, Peng Fan, Changzeng Li, Qiang Kong, Panlong Shen, Zhiwei Qin, Xiaomei Chi, Zhenhua Jin, Changqing Liu, Guangtong Zhong, Guyue Xu, Gang Liu, Zheng Zhu, Jinlong Adv Sci (Weinh) Research Articles The unique electronic structure and crystal structure driven by external pressure in transition metal tellurides (TMTs) can host unconventional quantum states. Here, the discovery of pressure‐induced phase transition at ≈2 GPa, and dome‐shaped superconducting phase emerged in van der Waals layered NbIrTe(4) is reported. The highest critical temperature (T (c)) is ≈5.8 K at pressure of ≈16 GPa, where the interlayered Te–Te covalent bonds form simultaneously derived from the synchrotron diffraction data, indicating the hosting structure of superconducting evolved from low‐pressure two‐dimensional (2D) phase to three‐dimensional (3D) structure with pressure higher than 30 GPa. Strikingly, the authors have found an anisotropic transport in the vicinity of the superconducting state, suggesting the emergence of a “stripe”‐like phase. The dome‐shaped superconducting phase and anisotropic transport are possibly due to the spatial modulation of interlayer Josephson coupling . John Wiley and Sons Inc. 2021-11-01 /pmc/articles/PMC8693038/ /pubmed/34723437 http://dx.doi.org/10.1002/advs.202103250 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Jin, Meiling
Yu, Peng
Fan, Changzeng
Li, Qiang
Kong, Panlong
Shen, Zhiwei
Qin, Xiaomei
Chi, Zhenhua
Jin, Changqing
Liu, Guangtong
Zhong, Guyue
Xu, Gang
Liu, Zheng
Zhu, Jinlong
Discovery of Dome‐Shaped Superconducting Phase and Anisotropic Transport in a van der Waals Layered Candidate NbIrTe(4) under Pressure
title Discovery of Dome‐Shaped Superconducting Phase and Anisotropic Transport in a van der Waals Layered Candidate NbIrTe(4) under Pressure
title_full Discovery of Dome‐Shaped Superconducting Phase and Anisotropic Transport in a van der Waals Layered Candidate NbIrTe(4) under Pressure
title_fullStr Discovery of Dome‐Shaped Superconducting Phase and Anisotropic Transport in a van der Waals Layered Candidate NbIrTe(4) under Pressure
title_full_unstemmed Discovery of Dome‐Shaped Superconducting Phase and Anisotropic Transport in a van der Waals Layered Candidate NbIrTe(4) under Pressure
title_short Discovery of Dome‐Shaped Superconducting Phase and Anisotropic Transport in a van der Waals Layered Candidate NbIrTe(4) under Pressure
title_sort discovery of dome‐shaped superconducting phase and anisotropic transport in a van der waals layered candidate nbirte(4) under pressure
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693038/
https://www.ncbi.nlm.nih.gov/pubmed/34723437
http://dx.doi.org/10.1002/advs.202103250
work_keys_str_mv AT jinmeiling discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT yupeng discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT fanchangzeng discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT liqiang discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT kongpanlong discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT shenzhiwei discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT qinxiaomei discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT chizhenhua discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT jinchangqing discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT liuguangtong discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT zhongguyue discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT xugang discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT liuzheng discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure
AT zhujinlong discoveryofdomeshapedsuperconductingphaseandanisotropictransportinavanderwaalslayeredcandidatenbirte4underpressure