Cargando…
Adaptive UNet-based Lung Segmentation and Ensemble Learning with CNN-based Deep Features for Automated COVID-19 Diagnosis
COVID-19 disease is a major health calamity in twentieth century, in which the infection is spreading at the global level. Developing countries like Bangladesh, India, and others are still facing a delay in recognizing COVID-19 cases. Hence, there is a need for immediate recognition with perfect ide...
Autor principal: | Das, Anupam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693146/ https://www.ncbi.nlm.nih.gov/pubmed/34955679 http://dx.doi.org/10.1007/s11042-021-11787-y |
Ejemplares similares
-
Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using fine-tuned CNN model
por: Hossain, Shahed, et al.
Publicado: (2023) -
RAD-UNet: Research on an improved lung nodule semantic segmentation algorithm based on deep learning
por: Wu, Zezhi, et al.
Publicado: (2023) -
AX-Unet: A Deep Learning Framework for Image Segmentation to Assist Pancreatic Tumor Diagnosis
por: Yang, Minqiang, et al.
Publicado: (2022) -
Connected-UNets: a deep learning architecture for breast mass segmentation
por: Baccouche, Asma, et al.
Publicado: (2021) -
Automated placental abruption identification using semantic segmentation, quantitative features, SVM, ensemble and multi-path CNN()
por: Asadpour, Vahid, et al.
Publicado: (2023)