Cargando…

Synthesis of anthradithiophene containing conjugated polymers via a cross-coupling strategy

New conjugated polymers that incorporate dihexylanthradithiophene (DHADT) in the main chain were prepared by Stille, Sonogashira, and Yamamoto cross-coupling polymerization reactions. The polymerization chemistry is enabled by a soluble 5,11-dibromodihexylanthradithiophene monomer that is capable of...

Descripción completa

Detalles Bibliográficos
Autores principales: Hussain, Waseem A., Plunkett, Kyle N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693243/
https://www.ncbi.nlm.nih.gov/pubmed/35423694
http://dx.doi.org/10.1039/d0ra09195b
Descripción
Sumario:New conjugated polymers that incorporate dihexylanthradithiophene (DHADT) in the main chain were prepared by Stille, Sonogashira, and Yamamoto cross-coupling polymerization reactions. The polymerization chemistry is enabled by a soluble 5,11-dibromodihexylanthradithiophene monomer that is capable of cross-coupling reactions. Five readily soluble DHADT containing polymers were prepared and characterized experimentally and computationally. These polymers possess HOMO energies of −5.18 eV to −5.43 eV and LUMO energies of −3.0 eV to −2.82 eV. The notable optical features include broad absorption and band gaps ranging from 1.62 eV to 2.15 eV. Polymers were tested in organic field effect transistors and were found to operate in the p-type regime.