Cargando…
Rapid and economic preparation of wearable thermotherapy pad based on simple cut-patterning of metal foil supported by plastic sheets
Stretchable and skin-mountable heaters have found application in the emerging industry of wearable thermotherapy devices. However, despite their excellent heating performances, most of them commonly suffer from complex, time-consuming, costly, or insufficiently reproducible fabrication processes. In...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693371/ https://www.ncbi.nlm.nih.gov/pubmed/35423695 http://dx.doi.org/10.1039/d0ra05728b |
_version_ | 1784619129001476096 |
---|---|
author | Ha, Sung-Hun Kim, Jong-Man |
author_facet | Ha, Sung-Hun Kim, Jong-Man |
author_sort | Ha, Sung-Hun |
collection | PubMed |
description | Stretchable and skin-mountable heaters have found application in the emerging industry of wearable thermotherapy devices. However, despite their excellent heating performances, most of them commonly suffer from complex, time-consuming, costly, or insufficiently reproducible fabrication processes. In this study, we report a simple, economic, and reproducible strategy to fabricate high-performance stretchable heaters based on facile cut-patterning of plastic sheet/metal foil/plastic sheet (PMP) structures. Further, this method can be executed without expensive materials or cumbersome material synthesis. The fabricated PMP heater is confirmed to exhibit excellent and uniform heating performance at a low voltage and satisfactory electrothermal stability even under high strain and repeated loads. Additionally, the proposed heater designs can be easily customized by simply changing the computer-aided design drawings during the cutting process, which also enables fabrication of devices with large area. The fabricated PMP heater is confirmed to be able to maintain conformal contact with target surfaces even under stretched conditions, inducing a fairly uniform temperature distribution. Finally, it is successfully demonstrated that a PMP heating band can be easily worn on the wrist and is capable of transferring enough heat to increase blood perfusion in the heated area even at a low voltage, highlighting its potential in wearable thermotherapy. |
format | Online Article Text |
id | pubmed-8693371 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-86933712022-04-13 Rapid and economic preparation of wearable thermotherapy pad based on simple cut-patterning of metal foil supported by plastic sheets Ha, Sung-Hun Kim, Jong-Man RSC Adv Chemistry Stretchable and skin-mountable heaters have found application in the emerging industry of wearable thermotherapy devices. However, despite their excellent heating performances, most of them commonly suffer from complex, time-consuming, costly, or insufficiently reproducible fabrication processes. In this study, we report a simple, economic, and reproducible strategy to fabricate high-performance stretchable heaters based on facile cut-patterning of plastic sheet/metal foil/plastic sheet (PMP) structures. Further, this method can be executed without expensive materials or cumbersome material synthesis. The fabricated PMP heater is confirmed to exhibit excellent and uniform heating performance at a low voltage and satisfactory electrothermal stability even under high strain and repeated loads. Additionally, the proposed heater designs can be easily customized by simply changing the computer-aided design drawings during the cutting process, which also enables fabrication of devices with large area. The fabricated PMP heater is confirmed to be able to maintain conformal contact with target surfaces even under stretched conditions, inducing a fairly uniform temperature distribution. Finally, it is successfully demonstrated that a PMP heating band can be easily worn on the wrist and is capable of transferring enough heat to increase blood perfusion in the heated area even at a low voltage, highlighting its potential in wearable thermotherapy. The Royal Society of Chemistry 2021-01-04 /pmc/articles/PMC8693371/ /pubmed/35423695 http://dx.doi.org/10.1039/d0ra05728b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Ha, Sung-Hun Kim, Jong-Man Rapid and economic preparation of wearable thermotherapy pad based on simple cut-patterning of metal foil supported by plastic sheets |
title | Rapid and economic preparation of wearable thermotherapy pad based on simple cut-patterning of metal foil supported by plastic sheets |
title_full | Rapid and economic preparation of wearable thermotherapy pad based on simple cut-patterning of metal foil supported by plastic sheets |
title_fullStr | Rapid and economic preparation of wearable thermotherapy pad based on simple cut-patterning of metal foil supported by plastic sheets |
title_full_unstemmed | Rapid and economic preparation of wearable thermotherapy pad based on simple cut-patterning of metal foil supported by plastic sheets |
title_short | Rapid and economic preparation of wearable thermotherapy pad based on simple cut-patterning of metal foil supported by plastic sheets |
title_sort | rapid and economic preparation of wearable thermotherapy pad based on simple cut-patterning of metal foil supported by plastic sheets |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693371/ https://www.ncbi.nlm.nih.gov/pubmed/35423695 http://dx.doi.org/10.1039/d0ra05728b |
work_keys_str_mv | AT hasunghun rapidandeconomicpreparationofwearablethermotherapypadbasedonsimplecutpatterningofmetalfoilsupportedbyplasticsheets AT kimjongman rapidandeconomicpreparationofwearablethermotherapypadbasedonsimplecutpatterningofmetalfoilsupportedbyplasticsheets |