Cargando…
Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells
In the current study, novel four electrode-based impedimetric biosensors have been fabricated using photolithography techniques and utilized to evaluate the cytotoxicity of tamoxifen on cervical cancer cell lines. The cell impedance was measured employing the electric cell-substrate impedance sensin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693377/ https://www.ncbi.nlm.nih.gov/pubmed/35423705 http://dx.doi.org/10.1039/d0ra09155c |
_version_ | 1784619130479968256 |
---|---|
author | Pradhan, Rangadhar Kalkal, Ashish Jindal, Shlok Packirisamy, Gopinath Manhas, Sanjeev |
author_facet | Pradhan, Rangadhar Kalkal, Ashish Jindal, Shlok Packirisamy, Gopinath Manhas, Sanjeev |
author_sort | Pradhan, Rangadhar |
collection | PubMed |
description | In the current study, novel four electrode-based impedimetric biosensors have been fabricated using photolithography techniques and utilized to evaluate the cytotoxicity of tamoxifen on cervical cancer cell lines. The cell impedance was measured employing the electric cell-substrate impedance sensing (ECIS) method over the frequency range of 100 Hz to 1 MHz. The results obtained from impedimetric biosensors indicate that tamoxifen caused a significant reduction in the number of HeLa cells on the electrode surfaces in a dose-dependent manner. Next, the impedance values recorded by the fabricated biosensors have been compared with the results obtained from the different conventional techniques such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), live-dead cell assay, and flow cytometric analysis to estimate the cytotoxicity of tamoxifen. The impedimetric cytotoxicity of tamoxifen over the growth and proliferation of HeLa cells correlates well with the traditional methods. In addition, the IC(50) values obtained from impedimetric data and MTT assay are comparable, signifying that the ECIS technique can be an alternative method to assess the cytotoxicity of different novel drugs. The working principle of the biosensor has been examined by scanning electron microscopy, indicating the detachment of cells from gold surfaces in a dose-dependent manner, signifying the decrease in impedance at higher drug doses. |
format | Online Article Text |
id | pubmed-8693377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-86933772022-04-13 Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells Pradhan, Rangadhar Kalkal, Ashish Jindal, Shlok Packirisamy, Gopinath Manhas, Sanjeev RSC Adv Chemistry In the current study, novel four electrode-based impedimetric biosensors have been fabricated using photolithography techniques and utilized to evaluate the cytotoxicity of tamoxifen on cervical cancer cell lines. The cell impedance was measured employing the electric cell-substrate impedance sensing (ECIS) method over the frequency range of 100 Hz to 1 MHz. The results obtained from impedimetric biosensors indicate that tamoxifen caused a significant reduction in the number of HeLa cells on the electrode surfaces in a dose-dependent manner. Next, the impedance values recorded by the fabricated biosensors have been compared with the results obtained from the different conventional techniques such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), live-dead cell assay, and flow cytometric analysis to estimate the cytotoxicity of tamoxifen. The impedimetric cytotoxicity of tamoxifen over the growth and proliferation of HeLa cells correlates well with the traditional methods. In addition, the IC(50) values obtained from impedimetric data and MTT assay are comparable, signifying that the ECIS technique can be an alternative method to assess the cytotoxicity of different novel drugs. The working principle of the biosensor has been examined by scanning electron microscopy, indicating the detachment of cells from gold surfaces in a dose-dependent manner, signifying the decrease in impedance at higher drug doses. The Royal Society of Chemistry 2021-01-04 /pmc/articles/PMC8693377/ /pubmed/35423705 http://dx.doi.org/10.1039/d0ra09155c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Pradhan, Rangadhar Kalkal, Ashish Jindal, Shlok Packirisamy, Gopinath Manhas, Sanjeev Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells |
title | Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells |
title_full | Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells |
title_fullStr | Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells |
title_full_unstemmed | Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells |
title_short | Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells |
title_sort | four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693377/ https://www.ncbi.nlm.nih.gov/pubmed/35423705 http://dx.doi.org/10.1039/d0ra09155c |
work_keys_str_mv | AT pradhanrangadhar fourelectrodebasedimpedimetricbiosensorsforevaluatingcytotoxicityoftamoxifenoncervicalcancercells AT kalkalashish fourelectrodebasedimpedimetricbiosensorsforevaluatingcytotoxicityoftamoxifenoncervicalcancercells AT jindalshlok fourelectrodebasedimpedimetricbiosensorsforevaluatingcytotoxicityoftamoxifenoncervicalcancercells AT packirisamygopinath fourelectrodebasedimpedimetricbiosensorsforevaluatingcytotoxicityoftamoxifenoncervicalcancercells AT manhassanjeev fourelectrodebasedimpedimetricbiosensorsforevaluatingcytotoxicityoftamoxifenoncervicalcancercells |