Cargando…
Calcination-free production of calcium hydroxide at sub-boiling temperatures
Calcium hydroxide (Ca(OH)(2)), a commodity chemical, finds use in diverse industries ranging from food, to environmental remediation and construction. However, the current thermal process of Ca(OH)(2) production via limestone calcination is energy- and CO(2)-intensive. Herein, we demonstrate a novel...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693611/ https://www.ncbi.nlm.nih.gov/pubmed/35424115 http://dx.doi.org/10.1039/d0ra08449b |
_version_ | 1784619178154524672 |
---|---|
author | Vallejo Castaño, Sara Callagon La Plante, Erika Shimoda, Sho Wang, Bu Neithalath, Narayanan Sant, Gaurav Pilon, Laurent |
author_facet | Vallejo Castaño, Sara Callagon La Plante, Erika Shimoda, Sho Wang, Bu Neithalath, Narayanan Sant, Gaurav Pilon, Laurent |
author_sort | Vallejo Castaño, Sara |
collection | PubMed |
description | Calcium hydroxide (Ca(OH)(2)), a commodity chemical, finds use in diverse industries ranging from food, to environmental remediation and construction. However, the current thermal process of Ca(OH)(2) production via limestone calcination is energy- and CO(2)-intensive. Herein, we demonstrate a novel aqueous-phase calcination-free process to precipitate Ca(OH)(2) from saturated solutions at sub-boiling temperatures in three steps. First, calcium was extracted from an archetypal alkaline industrial waste, a steel slag, to produce an alkaline leachate. Second, the leachate was concentrated using reverse osmosis (RO) processing. This elevated the Ca-abundance in the leachate to a level approaching Ca(OH)(2) saturation at ambient temperature. Thereafter, Ca(OH)(2) was precipitated from the concentrated leachate by forcing a temperature excursion in excess of 65 °C while exploiting the retrograde solubility of Ca(OH)(2). This nature of temperature swing can be forced using low-grade waste heat (≤100 °C) as is often available at power generation, and industrial facilities, or using solar thermal heat. Based on a detailed accounting of the mass and energy balances, this new process offers at least ≈65% lower CO(2) emissions than incumbent methods of Ca(OH)(2), and potentially, cement production. |
format | Online Article Text |
id | pubmed-8693611 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-86936112022-04-13 Calcination-free production of calcium hydroxide at sub-boiling temperatures Vallejo Castaño, Sara Callagon La Plante, Erika Shimoda, Sho Wang, Bu Neithalath, Narayanan Sant, Gaurav Pilon, Laurent RSC Adv Chemistry Calcium hydroxide (Ca(OH)(2)), a commodity chemical, finds use in diverse industries ranging from food, to environmental remediation and construction. However, the current thermal process of Ca(OH)(2) production via limestone calcination is energy- and CO(2)-intensive. Herein, we demonstrate a novel aqueous-phase calcination-free process to precipitate Ca(OH)(2) from saturated solutions at sub-boiling temperatures in three steps. First, calcium was extracted from an archetypal alkaline industrial waste, a steel slag, to produce an alkaline leachate. Second, the leachate was concentrated using reverse osmosis (RO) processing. This elevated the Ca-abundance in the leachate to a level approaching Ca(OH)(2) saturation at ambient temperature. Thereafter, Ca(OH)(2) was precipitated from the concentrated leachate by forcing a temperature excursion in excess of 65 °C while exploiting the retrograde solubility of Ca(OH)(2). This nature of temperature swing can be forced using low-grade waste heat (≤100 °C) as is often available at power generation, and industrial facilities, or using solar thermal heat. Based on a detailed accounting of the mass and energy balances, this new process offers at least ≈65% lower CO(2) emissions than incumbent methods of Ca(OH)(2), and potentially, cement production. The Royal Society of Chemistry 2021-01-06 /pmc/articles/PMC8693611/ /pubmed/35424115 http://dx.doi.org/10.1039/d0ra08449b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Vallejo Castaño, Sara Callagon La Plante, Erika Shimoda, Sho Wang, Bu Neithalath, Narayanan Sant, Gaurav Pilon, Laurent Calcination-free production of calcium hydroxide at sub-boiling temperatures |
title | Calcination-free production of calcium hydroxide at sub-boiling temperatures |
title_full | Calcination-free production of calcium hydroxide at sub-boiling temperatures |
title_fullStr | Calcination-free production of calcium hydroxide at sub-boiling temperatures |
title_full_unstemmed | Calcination-free production of calcium hydroxide at sub-boiling temperatures |
title_short | Calcination-free production of calcium hydroxide at sub-boiling temperatures |
title_sort | calcination-free production of calcium hydroxide at sub-boiling temperatures |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693611/ https://www.ncbi.nlm.nih.gov/pubmed/35424115 http://dx.doi.org/10.1039/d0ra08449b |
work_keys_str_mv | AT vallejocastanosara calcinationfreeproductionofcalciumhydroxideatsubboilingtemperatures AT callagonlaplanteerika calcinationfreeproductionofcalciumhydroxideatsubboilingtemperatures AT shimodasho calcinationfreeproductionofcalciumhydroxideatsubboilingtemperatures AT wangbu calcinationfreeproductionofcalciumhydroxideatsubboilingtemperatures AT neithalathnarayanan calcinationfreeproductionofcalciumhydroxideatsubboilingtemperatures AT santgaurav calcinationfreeproductionofcalciumhydroxideatsubboilingtemperatures AT pilonlaurent calcinationfreeproductionofcalciumhydroxideatsubboilingtemperatures |