Cargando…
Identifying Gene–Environment Interactions With Robust Marginal Bayesian Variable Selection
In high-throughput genetics studies, an important aim is to identify gene–environment interactions associated with the clinical outcomes. Recently, multiple marginal penalization methods have been developed and shown to be effective in G×E studies. However, within the Bayesian framework, marginal va...
Autores principales: | Lu, Xi, Fan, Kun, Ren, Jie, Wu, Cen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693717/ https://www.ncbi.nlm.nih.gov/pubmed/34956304 http://dx.doi.org/10.3389/fgene.2021.667074 |
Ejemplares similares
-
Genotype by environment interaction and breeding for robustness in livestock
por: Rauw, Wendy M., et al.
Publicado: (2015) -
Springer: An R package for bi-level variable selection of high-dimensional longitudinal data
por: Zhou, Fei, et al.
Publicado: (2023) -
Meta-Analyzing Multiple Omics Data With Robust Variable Selection
por: Hu, Zongliang, et al.
Publicado: (2021) -
Penalized Variable Selection for Lipid–Environment Interactions in a Longitudinal Lipidomics Study
por: Zhou, Fei, et al.
Publicado: (2019) -
Integrating Multi–Omics Data for Gene-Environment Interactions
por: Du, Yinhao, et al.
Publicado: (2021)