Cargando…
Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null Tetrahymena cells reveals functional MIPs
The core structure of motile cilia and flagella, the axoneme, is built from a stable population of doublet microtubules. This unique stability is brought about, at least in part, by a network of microtubule inner proteins (MIPs) that are bound to the luminal side of the microtubule walls. Rib72A and...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693976/ https://www.ncbi.nlm.nih.gov/pubmed/34406789 http://dx.doi.org/10.1091/mbc.E20-12-0786 |
_version_ | 1784619253570207744 |
---|---|
author | Fabritius, Amy S. Bayless, Brian A. Li, Sam Stoddard, Daniel Heydeck, Westley Ebmeier, Christopher C. Anderson, Lauren Gunnels, Tess Nachiappan, Chidambaram Whittall, Justen B. Old, William Agard, David A. Nicastro, Daniela Winey, Mark |
author_facet | Fabritius, Amy S. Bayless, Brian A. Li, Sam Stoddard, Daniel Heydeck, Westley Ebmeier, Christopher C. Anderson, Lauren Gunnels, Tess Nachiappan, Chidambaram Whittall, Justen B. Old, William Agard, David A. Nicastro, Daniela Winey, Mark |
author_sort | Fabritius, Amy S. |
collection | PubMed |
description | The core structure of motile cilia and flagella, the axoneme, is built from a stable population of doublet microtubules. This unique stability is brought about, at least in part, by a network of microtubule inner proteins (MIPs) that are bound to the luminal side of the microtubule walls. Rib72A and Rib72B were identified as MIPs in the motile cilia of the protist Tetrahymena thermophila. Loss of these proteins leads to ciliary defects and loss of additional MIPs. We performed mass spectrometry coupled with proteomic analysis and bioinformatics to identify the MIPs lost in RIB72A/B knockout Tetrahymena axonemes. We identified a number of candidate MIPs and pursued one, Fap115, for functional characterization. We find that loss of Fap115 results in disrupted cell swimming and aberrant ciliary beating. Cryo-electron tomography reveals that Fap115 localizes to MIP6a in the A-tubule of the doublet microtubules. Overall, our results highlight the complex relationship between MIPs, ciliary structure, and ciliary function. |
format | Online Article Text |
id | pubmed-8693976 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-86939762022-01-31 Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null Tetrahymena cells reveals functional MIPs Fabritius, Amy S. Bayless, Brian A. Li, Sam Stoddard, Daniel Heydeck, Westley Ebmeier, Christopher C. Anderson, Lauren Gunnels, Tess Nachiappan, Chidambaram Whittall, Justen B. Old, William Agard, David A. Nicastro, Daniela Winey, Mark Mol Biol Cell Brief Reports The core structure of motile cilia and flagella, the axoneme, is built from a stable population of doublet microtubules. This unique stability is brought about, at least in part, by a network of microtubule inner proteins (MIPs) that are bound to the luminal side of the microtubule walls. Rib72A and Rib72B were identified as MIPs in the motile cilia of the protist Tetrahymena thermophila. Loss of these proteins leads to ciliary defects and loss of additional MIPs. We performed mass spectrometry coupled with proteomic analysis and bioinformatics to identify the MIPs lost in RIB72A/B knockout Tetrahymena axonemes. We identified a number of candidate MIPs and pursued one, Fap115, for functional characterization. We find that loss of Fap115 results in disrupted cell swimming and aberrant ciliary beating. Cryo-electron tomography reveals that Fap115 localizes to MIP6a in the A-tubule of the doublet microtubules. Overall, our results highlight the complex relationship between MIPs, ciliary structure, and ciliary function. The American Society for Cell Biology 2021-11-01 /pmc/articles/PMC8693976/ /pubmed/34406789 http://dx.doi.org/10.1091/mbc.E20-12-0786 Text en © 2021 Fabritius et al. “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. https://creativecommons.org/licenses/by-nc-sa/3.0/This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License. |
spellingShingle | Brief Reports Fabritius, Amy S. Bayless, Brian A. Li, Sam Stoddard, Daniel Heydeck, Westley Ebmeier, Christopher C. Anderson, Lauren Gunnels, Tess Nachiappan, Chidambaram Whittall, Justen B. Old, William Agard, David A. Nicastro, Daniela Winey, Mark Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null Tetrahymena cells reveals functional MIPs |
title | Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null Tetrahymena cells reveals functional MIPs |
title_full | Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null Tetrahymena cells reveals functional MIPs |
title_fullStr | Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null Tetrahymena cells reveals functional MIPs |
title_full_unstemmed | Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null Tetrahymena cells reveals functional MIPs |
title_short | Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null Tetrahymena cells reveals functional MIPs |
title_sort | proteomic analysis of microtubule inner proteins (mips) in rib72 null tetrahymena cells reveals functional mips |
topic | Brief Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693976/ https://www.ncbi.nlm.nih.gov/pubmed/34406789 http://dx.doi.org/10.1091/mbc.E20-12-0786 |
work_keys_str_mv | AT fabritiusamys proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT baylessbriana proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT lisam proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT stoddarddaniel proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT heydeckwestley proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT ebmeierchristopherc proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT andersonlauren proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT gunnelstess proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT nachiappanchidambaram proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT whittalljustenb proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT oldwilliam proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT agarddavida proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT nicastrodaniela proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips AT wineymark proteomicanalysisofmicrotubuleinnerproteinsmipsinrib72nulltetrahymenacellsrevealsfunctionalmips |