Cargando…
Self-supervised clustering of mass spectrometry imaging data using contrastive learning
Mass spectrometry imaging (MSI) is widely used for the label-free molecular mapping of biological samples. The identification of co-localized molecules in MSI data is crucial to the understanding of biochemical pathways. One of key challenges in molecular colocalization is that complex MSI data are...
Autores principales: | Hu, Hang, Bindu, Jyothsna Padmakumar, Laskin, Julia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694357/ https://www.ncbi.nlm.nih.gov/pubmed/35059155 http://dx.doi.org/10.1039/d1sc04077d |
Ejemplares similares
-
Emerging Computational Methods in Mass Spectrometry Imaging
por: Hu, Hang, et al.
Publicado: (2022) -
Contrastive self-supervised clustering of scRNA-seq data
por: Ciortan, Madalina, et al.
Publicado: (2021) -
Supervised topological data analysis for MALDI mass spectrometry imaging applications
por: Klaila, Gideon, et al.
Publicado: (2023) -
High-Throughput
Mass Spectrometry Imaging with Dynamic
Sparse Sampling
por: Hu, Hang, et al.
Publicado: (2022) -
Contrastive Self-Supervised Learning for Stress Detection from ECG Data
por: Rabbani, Suha, et al.
Publicado: (2022)