Cargando…
Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test
Groundwater remediation is difficult because of the complexity of the treatment area and the presence of various pollutants, and it is difficult to achieve using a single process. A combined pump-and-treat (P&T) and in situ chemical oxidation (ISCO) system was used to remove dense nonaqueous-pha...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694382/ https://www.ncbi.nlm.nih.gov/pubmed/35424328 http://dx.doi.org/10.1039/d0ra10010b |
_version_ | 1784619342226259968 |
---|---|
author | Xie, Tian Dang, Zhi Zhang, Jian Zhang, Qian Zhang, Rong-Hai Liao, Chang-Jun Lu, Gui-Ning |
author_facet | Xie, Tian Dang, Zhi Zhang, Jian Zhang, Qian Zhang, Rong-Hai Liao, Chang-Jun Lu, Gui-Ning |
author_sort | Xie, Tian |
collection | PubMed |
description | Groundwater remediation is difficult because of the complexity of the treatment area and the presence of various pollutants, and it is difficult to achieve using a single process. A combined pump-and-treat (P&T) and in situ chemical oxidation (ISCO) system was used to remove dense nonaqueous-phase liquids (DNAPLs) from groundwater at the field scale in this study. The underground water pH, electrical conductivity, dissolved oxygen concentration, and SO(4)(2−) concentration were used as indirect evidence of in situ chemical reactions. Groundwater remediation using the P&T-ISCO process using 1.5% sodium persulfate and 0.03% sodium hydroxide had a remarkable effect on DNAPLs, and the DNAPL diffusion distance was much higher under pumping conditions than under natural conditions. During groundwater remediation, the pollutant concentration positively correlated with the pH, electrical conductivity, and dissolved oxygen concentration and negatively correlated with the SO(4)(2−) concentration. In summary, P&T-ISCO can effectively accelerate DNAPL degradation to give efficient groundwater remediation. |
format | Online Article Text |
id | pubmed-8694382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-86943822022-04-13 Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test Xie, Tian Dang, Zhi Zhang, Jian Zhang, Qian Zhang, Rong-Hai Liao, Chang-Jun Lu, Gui-Ning RSC Adv Chemistry Groundwater remediation is difficult because of the complexity of the treatment area and the presence of various pollutants, and it is difficult to achieve using a single process. A combined pump-and-treat (P&T) and in situ chemical oxidation (ISCO) system was used to remove dense nonaqueous-phase liquids (DNAPLs) from groundwater at the field scale in this study. The underground water pH, electrical conductivity, dissolved oxygen concentration, and SO(4)(2−) concentration were used as indirect evidence of in situ chemical reactions. Groundwater remediation using the P&T-ISCO process using 1.5% sodium persulfate and 0.03% sodium hydroxide had a remarkable effect on DNAPLs, and the DNAPL diffusion distance was much higher under pumping conditions than under natural conditions. During groundwater remediation, the pollutant concentration positively correlated with the pH, electrical conductivity, and dissolved oxygen concentration and negatively correlated with the SO(4)(2−) concentration. In summary, P&T-ISCO can effectively accelerate DNAPL degradation to give efficient groundwater remediation. The Royal Society of Chemistry 2021-01-21 /pmc/articles/PMC8694382/ /pubmed/35424328 http://dx.doi.org/10.1039/d0ra10010b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Xie, Tian Dang, Zhi Zhang, Jian Zhang, Qian Zhang, Rong-Hai Liao, Chang-Jun Lu, Gui-Ning Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test |
title | Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test |
title_full | Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test |
title_fullStr | Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test |
title_full_unstemmed | Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test |
title_short | Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test |
title_sort | decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694382/ https://www.ncbi.nlm.nih.gov/pubmed/35424328 http://dx.doi.org/10.1039/d0ra10010b |
work_keys_str_mv | AT xietian decontaminationofdensenonaqueousphaseliquidsingroundwaterusingpumpandtreatandinsituchemicaloxidationprocessesafieldtest AT dangzhi decontaminationofdensenonaqueousphaseliquidsingroundwaterusingpumpandtreatandinsituchemicaloxidationprocessesafieldtest AT zhangjian decontaminationofdensenonaqueousphaseliquidsingroundwaterusingpumpandtreatandinsituchemicaloxidationprocessesafieldtest AT zhangqian decontaminationofdensenonaqueousphaseliquidsingroundwaterusingpumpandtreatandinsituchemicaloxidationprocessesafieldtest AT zhangronghai decontaminationofdensenonaqueousphaseliquidsingroundwaterusingpumpandtreatandinsituchemicaloxidationprocessesafieldtest AT liaochangjun decontaminationofdensenonaqueousphaseliquidsingroundwaterusingpumpandtreatandinsituchemicaloxidationprocessesafieldtest AT luguining decontaminationofdensenonaqueousphaseliquidsingroundwaterusingpumpandtreatandinsituchemicaloxidationprocessesafieldtest |