Cargando…

Asymmetric patterning drives the folding of a tripodal DNA nanotweezer

DNA tweezers have emerged as powerful devices for a wide range of biochemical and sensing applications; however, most DNA tweezers consist of single units activated by DNA recognition, limiting their range of motion and ability to respond to complex stimuli. Herein, we present an extended, tripodal...

Descripción completa

Detalles Bibliográficos
Autores principales: Saliba, Daniel, Trinh, Tuan, Lachance-Brais, Christophe, Prinzen, Alexander L., Rizzuto, Felix J., de Rochambeau, Donatien, Sleiman, Hanadi F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694393/
https://www.ncbi.nlm.nih.gov/pubmed/35059153
http://dx.doi.org/10.1039/d1sc04793k
_version_ 1784619344882302976
author Saliba, Daniel
Trinh, Tuan
Lachance-Brais, Christophe
Prinzen, Alexander L.
Rizzuto, Felix J.
de Rochambeau, Donatien
Sleiman, Hanadi F.
author_facet Saliba, Daniel
Trinh, Tuan
Lachance-Brais, Christophe
Prinzen, Alexander L.
Rizzuto, Felix J.
de Rochambeau, Donatien
Sleiman, Hanadi F.
author_sort Saliba, Daniel
collection PubMed
description DNA tweezers have emerged as powerful devices for a wide range of biochemical and sensing applications; however, most DNA tweezers consist of single units activated by DNA recognition, limiting their range of motion and ability to respond to complex stimuli. Herein, we present an extended, tripodal DNA nanotweezer with a small molecule junction. Simultaneous, asymmetric elongation of our molecular core is achieved using polymerase chain reaction (PCR) to produce length- and sequence-specific DNA arms with repeating DNA regions. When rigidified, our DNA tweezer can be addressed with streptavidin-binding ligands. Full control over the number, separation, and location of these ligands enables site-specific streptavidin recognition; all three arms of the DNA nanotweezer wrap around multiple streptavidin units simultaneously. Our approach combines the simplicity of DNA tile arrays with the size regime normally provided by DNA origami, offering an integrated platform for the use of branched DNA scaffolds as structural building blocks, protein sensors, and dynamic, stimuli-responsive materials.
format Online
Article
Text
id pubmed-8694393
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-86943932022-01-19 Asymmetric patterning drives the folding of a tripodal DNA nanotweezer Saliba, Daniel Trinh, Tuan Lachance-Brais, Christophe Prinzen, Alexander L. Rizzuto, Felix J. de Rochambeau, Donatien Sleiman, Hanadi F. Chem Sci Chemistry DNA tweezers have emerged as powerful devices for a wide range of biochemical and sensing applications; however, most DNA tweezers consist of single units activated by DNA recognition, limiting their range of motion and ability to respond to complex stimuli. Herein, we present an extended, tripodal DNA nanotweezer with a small molecule junction. Simultaneous, asymmetric elongation of our molecular core is achieved using polymerase chain reaction (PCR) to produce length- and sequence-specific DNA arms with repeating DNA regions. When rigidified, our DNA tweezer can be addressed with streptavidin-binding ligands. Full control over the number, separation, and location of these ligands enables site-specific streptavidin recognition; all three arms of the DNA nanotweezer wrap around multiple streptavidin units simultaneously. Our approach combines the simplicity of DNA tile arrays with the size regime normally provided by DNA origami, offering an integrated platform for the use of branched DNA scaffolds as structural building blocks, protein sensors, and dynamic, stimuli-responsive materials. The Royal Society of Chemistry 2021-11-16 /pmc/articles/PMC8694393/ /pubmed/35059153 http://dx.doi.org/10.1039/d1sc04793k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Saliba, Daniel
Trinh, Tuan
Lachance-Brais, Christophe
Prinzen, Alexander L.
Rizzuto, Felix J.
de Rochambeau, Donatien
Sleiman, Hanadi F.
Asymmetric patterning drives the folding of a tripodal DNA nanotweezer
title Asymmetric patterning drives the folding of a tripodal DNA nanotweezer
title_full Asymmetric patterning drives the folding of a tripodal DNA nanotweezer
title_fullStr Asymmetric patterning drives the folding of a tripodal DNA nanotweezer
title_full_unstemmed Asymmetric patterning drives the folding of a tripodal DNA nanotweezer
title_short Asymmetric patterning drives the folding of a tripodal DNA nanotweezer
title_sort asymmetric patterning drives the folding of a tripodal dna nanotweezer
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694393/
https://www.ncbi.nlm.nih.gov/pubmed/35059153
http://dx.doi.org/10.1039/d1sc04793k
work_keys_str_mv AT salibadaniel asymmetricpatterningdrivesthefoldingofatripodaldnananotweezer
AT trinhtuan asymmetricpatterningdrivesthefoldingofatripodaldnananotweezer
AT lachancebraischristophe asymmetricpatterningdrivesthefoldingofatripodaldnananotweezer
AT prinzenalexanderl asymmetricpatterningdrivesthefoldingofatripodaldnananotweezer
AT rizzutofelixj asymmetricpatterningdrivesthefoldingofatripodaldnananotweezer
AT derochambeaudonatien asymmetricpatterningdrivesthefoldingofatripodaldnananotweezer
AT sleimanhanadif asymmetricpatterningdrivesthefoldingofatripodaldnananotweezer