Cargando…
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder
microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly...
Autores principales: | Li, Lei, Wang, Yu-Tian, Ji, Cun-Mei, Zheng, Chun-Hou, Ni, Jian-Cheng, Su, Yan-Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694430/ https://www.ncbi.nlm.nih.gov/pubmed/34890410 http://dx.doi.org/10.1371/journal.pcbi.1009655 |
Ejemplares similares
-
Prediction of miRNA-disease associations in microbes based on graph convolutional networks and autoencoders
por: Liao, Qingquan, et al.
Publicado: (2023) -
SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder
por: Wang, Shudong, et al.
Publicado: (2022) -
Predicting lncRNA-miRNA Interaction via Graph Convolution Auto-Encoder
por: Huang, Yu-An, et al.
Publicado: (2019) -
ILPMDA: Predicting miRNA–Disease Association Based on Improved Label Propagation
por: Wang, Yu-Tian, et al.
Publicado: (2021) -
Predicting miRNA-disease associations via layer attention graph convolutional network model
por: Han, Han, et al.
Publicado: (2022)