Cargando…
Observation of bound states in the continuum embedded in symmetry bandgaps
In the past decade, symmetry-protected bound states in the continuum (BICs) have proven to be an important design principle for creating and enhancing devices reliant upon states with high-quality (Q) factors, such as sensors, lasers, and those for harmonic generation. However, as we show, current i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694597/ https://www.ncbi.nlm.nih.gov/pubmed/34936454 http://dx.doi.org/10.1126/sciadv.abk1117 |
Sumario: | In the past decade, symmetry-protected bound states in the continuum (BICs) have proven to be an important design principle for creating and enhancing devices reliant upon states with high-quality (Q) factors, such as sensors, lasers, and those for harmonic generation. However, as we show, current implementations of symmetry-protected BICs in photonic crystal slabs can only be found at the center of the Brillouin zone and below the Bragg diffraction limit, which fundamentally restricts their use to single-frequency applications. By microprinting a three-dimensional (3D) photonic crystal structure using two-photon polymerization, we demonstrate that this limitation can be overcome by altering the radiative environment surrounding the slab to be a 3D photonic crystal. This allows for the protection of a line of BICs by embedding it in a symmetry bandgap of the crystal. This concept substantially expands the design freedom available for developing next-generation devices with high-Q states. |
---|