Cargando…

The influence of the shape and configuration of sensitizer molecules on the efficiency of DSSCs: a theoretical insight

The sensitizer is an active component of dye sensitized solar cell (DSSC) technology, which is highly influential for the performance of DSSCs. The present study attempts to investigate the relationship between the shape of the sensitizer molecule and efficiency of DSSCs. Specifically, 17 different...

Descripción completa

Detalles Bibliográficos
Autores principales: Krishnan, S., Senthilkumar, K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694715/
https://www.ncbi.nlm.nih.gov/pubmed/35423080
http://dx.doi.org/10.1039/d0ra10613e
_version_ 1784619416935202816
author Krishnan, S.
Senthilkumar, K.
author_facet Krishnan, S.
Senthilkumar, K.
author_sort Krishnan, S.
collection PubMed
description The sensitizer is an active component of dye sensitized solar cell (DSSC) technology, which is highly influential for the performance of DSSCs. The present study attempts to investigate the relationship between the shape of the sensitizer molecule and efficiency of DSSCs. Specifically, 17 different structures were investigated, and classified into four categories based on the shape of the dye molecule, namely L-shaped (linear), V-shaped, X-shaped and Y-shaped, and into two different categories based on the donor moiety. The five of studied structures contained a triphenylamine (TPA) donor moiety, and twelve structures contained carbazole (CAR) donor moiety. Parameters related to the performance of DSSCs such as absorption spectra, intramolecular charge transfer indices, frontier molecular orbitals, light harvesting efficiency, excited-state lifetime, exciton binding energy, electrostatic potential, charge transfer and electron injection ability were studied using results obtained from electronic structure calculations. The analysis of these various parameters showed that the linear-shaped and V-shaped sensitizers possess better photon absorption ability, and the V-shaped structure is best suited shape for applications in high performance DSSCs.
format Online
Article
Text
id pubmed-8694715
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-86947152022-04-13 The influence of the shape and configuration of sensitizer molecules on the efficiency of DSSCs: a theoretical insight Krishnan, S. Senthilkumar, K. RSC Adv Chemistry The sensitizer is an active component of dye sensitized solar cell (DSSC) technology, which is highly influential for the performance of DSSCs. The present study attempts to investigate the relationship between the shape of the sensitizer molecule and efficiency of DSSCs. Specifically, 17 different structures were investigated, and classified into four categories based on the shape of the dye molecule, namely L-shaped (linear), V-shaped, X-shaped and Y-shaped, and into two different categories based on the donor moiety. The five of studied structures contained a triphenylamine (TPA) donor moiety, and twelve structures contained carbazole (CAR) donor moiety. Parameters related to the performance of DSSCs such as absorption spectra, intramolecular charge transfer indices, frontier molecular orbitals, light harvesting efficiency, excited-state lifetime, exciton binding energy, electrostatic potential, charge transfer and electron injection ability were studied using results obtained from electronic structure calculations. The analysis of these various parameters showed that the linear-shaped and V-shaped sensitizers possess better photon absorption ability, and the V-shaped structure is best suited shape for applications in high performance DSSCs. The Royal Society of Chemistry 2021-01-29 /pmc/articles/PMC8694715/ /pubmed/35423080 http://dx.doi.org/10.1039/d0ra10613e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Krishnan, S.
Senthilkumar, K.
The influence of the shape and configuration of sensitizer molecules on the efficiency of DSSCs: a theoretical insight
title The influence of the shape and configuration of sensitizer molecules on the efficiency of DSSCs: a theoretical insight
title_full The influence of the shape and configuration of sensitizer molecules on the efficiency of DSSCs: a theoretical insight
title_fullStr The influence of the shape and configuration of sensitizer molecules on the efficiency of DSSCs: a theoretical insight
title_full_unstemmed The influence of the shape and configuration of sensitizer molecules on the efficiency of DSSCs: a theoretical insight
title_short The influence of the shape and configuration of sensitizer molecules on the efficiency of DSSCs: a theoretical insight
title_sort influence of the shape and configuration of sensitizer molecules on the efficiency of dsscs: a theoretical insight
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694715/
https://www.ncbi.nlm.nih.gov/pubmed/35423080
http://dx.doi.org/10.1039/d0ra10613e
work_keys_str_mv AT krishnans theinfluenceoftheshapeandconfigurationofsensitizermoleculesontheefficiencyofdsscsatheoreticalinsight
AT senthilkumark theinfluenceoftheshapeandconfigurationofsensitizermoleculesontheefficiencyofdsscsatheoreticalinsight
AT krishnans influenceoftheshapeandconfigurationofsensitizermoleculesontheefficiencyofdsscsatheoreticalinsight
AT senthilkumark influenceoftheshapeandconfigurationofsensitizermoleculesontheefficiencyofdsscsatheoreticalinsight