Cargando…

In vitro biocompatibility of a sandblasted, acid-etched HA composite coating on ultrafine-grained titanium

A sandblasted, acid-etching hydroxyapatite (SLA-HA) composite coating on ultrafine-grained titanium was synthesized by the sandblasting, acid etching and electrophoresis deposition. Mouse osteoblasts (MC3T3-E1) were cultured in vitro and inoculated on the SLA-HA composite coating of the ultrafine-gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Chi, Yanxia, An, Sipeng, Xu, Yunpeng, Liu, Mingda, Zhang, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694837/
https://www.ncbi.nlm.nih.gov/pubmed/35423127
http://dx.doi.org/10.1039/d0ra10146j
Descripción
Sumario:A sandblasted, acid-etching hydroxyapatite (SLA-HA) composite coating on ultrafine-grained titanium was synthesized by the sandblasting, acid etching and electrophoresis deposition. Mouse osteoblasts (MC3T3-E1) were cultured in vitro and inoculated on the SLA-HA composite coating of the ultrafine-grained titanium. Using ultrafine-grained titanium with SLA coating as the control group, the adhesion and proliferation of the osteoblasts were analyzed using the CCK-8 assay. The number and morphology of the cells were observed using a laser confocal microscope. Cells toxicity of the cytotoxicity to osteoblasts was studied by culturing them in an immersion solution of the SLA-HA composite coating. The hemolysis properties of the obtained material were assessed using fresh rabbit blood. Ultrafine-grained titanium with the SLA-HA composite coating was found to have no significant toxicity to osteoblasts, as well as good blood compatibility, playing a positive role in the adhesion of osteoblasts and promoting their proliferation and differentiation.