Cargando…

Dihydroartemisinin Promoted Bone Marrow Mesenchymal Stem Cell Homing and Suppressed Inflammation and Oxidative Stress against Prostate Injury in Chronic Bacterial Prostatitis Mice Model

Although bone marrow mesenchymal stem cells (BMMSCs) are effective in treating chronic bacterial prostatitis (CBP), the homing of BMMSCs seems to require ultrasound induction. Dihydroartemisinin (DHA) is an important derivative of artemisinin (ART) and has been previously reported to alleviate infla...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shen, Li, Yongzhang, Su, Xiaozhe, Han, Aiyun, Cui, Yang, Lv, Shuyue, Zhang, Jin, Li, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694990/
https://www.ncbi.nlm.nih.gov/pubmed/34956376
http://dx.doi.org/10.1155/2021/1829736
Descripción
Sumario:Although bone marrow mesenchymal stem cells (BMMSCs) are effective in treating chronic bacterial prostatitis (CBP), the homing of BMMSCs seems to require ultrasound induction. Dihydroartemisinin (DHA) is an important derivative of artemisinin (ART) and has been previously reported to alleviate inflammation and autoimmune diseases. But the effect of DHA on chronic prostatitis (CP) is still unclear. This study aims to clarify the efficacy and mechanism of DHA in the treatment of CBP and its effect on the accumulation of BMMSCs. The experimental CBP was produced in C57BL/6 male mice via intraurethrally administered E. coli solution. Results showed that DHA treatment concentration-dependently promoted the accumulation of BMMSCs in prostate tissue of CBP mice. In addition, DHA and BMMSCs cotreatment significantly alleviated inflammation and improved prostate damage by decreasing the expression of proinflammatory factors such as TNF-α, IL-1β, and chemokines CXCL2, CXCL9, CXCL10, and CXCL11 in prostate tissue of CBP mice. Moreover, DHA and BMMSCs cotreatment displayed antioxidation property by increasing the production of glutathione peroxidase (GSH-Px), SOD, and decreasing malondialdehyde (MDA) expression. Mechanically, DHA and BMMSCs cotreatment significantly inhibited the expression of TGFβ-RI, TGFβ-RII, phosphor (p)-Smad2/3, and Smad4 in a dose-dependent manner while stimulated Smad7 expression in the same manner. In conclusion, our findings provided evidence that DHA effectively eliminated inflammatory and oxidative stress against prostate injury, and this effect involved the TGF-β/Smad signaling pathway in CBP.