Cargando…
A Machine Learning Approach to Assess Differential Item Functioning in Psychometric Questionnaires Using the Elastic Net Regularized Ordinal Logistic Regression in Small Sample Size Groups
Assessing differential item functioning (DIF) using the ordinal logistic regression (OLR) model highly depends on the asymptotic sampling distribution of the maximum likelihood (ML) estimators. The ML estimation method, which is often used to estimate the parameters of the OLR model for DIF detectio...
Autores principales: | Ebrahimi, Vahid, Bagheri, Zahra, Shayan, Zahra, Jafari, Peyman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695002/ https://www.ncbi.nlm.nih.gov/pubmed/34957307 http://dx.doi.org/10.1155/2021/6854477 |
Ejemplares similares
-
A Simulation Study to Assess the Effect of the Number of Response Categories on the Power of Ordinal Logistic Regression for Differential Item Functioning Analysis in Rating Scales
por: Allahyari, Elahe, et al.
Publicado: (2016) -
Adaptive group-regularized logistic elastic net regression
por: Münch, Magnus M, et al.
Publicado: (2019) -
A Comparative Study of the Bias Correction Methods for Differential Item Functioning Analysis in Logistic Regression with Rare Events Data
por: Faghih, Marjan, et al.
Publicado: (2020) -
Assessing the effect of child’s gender on their father–mother perception of the PedsQL™ 4.0 questionnaire: an iterative hybrid ordinal logistic regression/item response theory approach with Monte Carlo simulation
por: Doostfatemeh, Marziyeh, et al.
Publicado: (2020) -
Ordinal Logistic Regression in Medical Research
por: Bender, Ralf, et al.
Publicado: (1997)