Cargando…

Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties

The study presents approximate analytical solutions of the Schrödinger equation with a newly proposed potential model called Inversely Quadratic Hellmann-Kratzer potential (IQHKP). This potential is a superposition of Inversely Quadratic Hellman potential and Kratzer potential. The energy eigenvalue...

Descripción completa

Detalles Bibliográficos
Autores principales: Onyenegecha, C.P., El Anouz, Khadija, Opara, A.I., Njoku, I.J., Okereke, C.J., El Allati, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695294/
https://www.ncbi.nlm.nih.gov/pubmed/34988316
http://dx.doi.org/10.1016/j.heliyon.2021.e08617
_version_ 1784619545247350784
author Onyenegecha, C.P.
El Anouz, Khadija
Opara, A.I.
Njoku, I.J.
Okereke, C.J.
El Allati, A.
author_facet Onyenegecha, C.P.
El Anouz, Khadija
Opara, A.I.
Njoku, I.J.
Okereke, C.J.
El Allati, A.
author_sort Onyenegecha, C.P.
collection PubMed
description The study presents approximate analytical solutions of the Schrödinger equation with a newly proposed potential model called Inversely Quadratic Hellmann-Kratzer potential (IQHKP). This potential is a superposition of Inversely Quadratic Hellman potential and Kratzer potential. The energy eigenvalues and corresponding wavefunction are calculated via the formula method. We applied our results to evaluate thermodynamic functions such as vibrational free energy, F, vibrational internal energy, U, vibrational entropy, S, and vibrational specific heat, C. We also reported special cases of importance.
format Online
Article
Text
id pubmed-8695294
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86952942022-01-04 Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties Onyenegecha, C.P. El Anouz, Khadija Opara, A.I. Njoku, I.J. Okereke, C.J. El Allati, A. Heliyon Research Article The study presents approximate analytical solutions of the Schrödinger equation with a newly proposed potential model called Inversely Quadratic Hellmann-Kratzer potential (IQHKP). This potential is a superposition of Inversely Quadratic Hellman potential and Kratzer potential. The energy eigenvalues and corresponding wavefunction are calculated via the formula method. We applied our results to evaluate thermodynamic functions such as vibrational free energy, F, vibrational internal energy, U, vibrational entropy, S, and vibrational specific heat, C. We also reported special cases of importance. Elsevier 2021-12-17 /pmc/articles/PMC8695294/ /pubmed/34988316 http://dx.doi.org/10.1016/j.heliyon.2021.e08617 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Onyenegecha, C.P.
El Anouz, Khadija
Opara, A.I.
Njoku, I.J.
Okereke, C.J.
El Allati, A.
Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties
title Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties
title_full Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties
title_fullStr Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties
title_full_unstemmed Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties
title_short Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties
title_sort nonrelativistic treatment of inversely quadratic hellmann-kratzer potential and thermodynamic properties
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695294/
https://www.ncbi.nlm.nih.gov/pubmed/34988316
http://dx.doi.org/10.1016/j.heliyon.2021.e08617
work_keys_str_mv AT onyenegechacp nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties
AT elanouzkhadija nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties
AT oparaai nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties
AT njokuij nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties
AT okerekecj nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties
AT elallatia nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties