Cargando…
Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties
The study presents approximate analytical solutions of the Schrödinger equation with a newly proposed potential model called Inversely Quadratic Hellmann-Kratzer potential (IQHKP). This potential is a superposition of Inversely Quadratic Hellman potential and Kratzer potential. The energy eigenvalue...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695294/ https://www.ncbi.nlm.nih.gov/pubmed/34988316 http://dx.doi.org/10.1016/j.heliyon.2021.e08617 |
_version_ | 1784619545247350784 |
---|---|
author | Onyenegecha, C.P. El Anouz, Khadija Opara, A.I. Njoku, I.J. Okereke, C.J. El Allati, A. |
author_facet | Onyenegecha, C.P. El Anouz, Khadija Opara, A.I. Njoku, I.J. Okereke, C.J. El Allati, A. |
author_sort | Onyenegecha, C.P. |
collection | PubMed |
description | The study presents approximate analytical solutions of the Schrödinger equation with a newly proposed potential model called Inversely Quadratic Hellmann-Kratzer potential (IQHKP). This potential is a superposition of Inversely Quadratic Hellman potential and Kratzer potential. The energy eigenvalues and corresponding wavefunction are calculated via the formula method. We applied our results to evaluate thermodynamic functions such as vibrational free energy, F, vibrational internal energy, U, vibrational entropy, S, and vibrational specific heat, C. We also reported special cases of importance. |
format | Online Article Text |
id | pubmed-8695294 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-86952942022-01-04 Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties Onyenegecha, C.P. El Anouz, Khadija Opara, A.I. Njoku, I.J. Okereke, C.J. El Allati, A. Heliyon Research Article The study presents approximate analytical solutions of the Schrödinger equation with a newly proposed potential model called Inversely Quadratic Hellmann-Kratzer potential (IQHKP). This potential is a superposition of Inversely Quadratic Hellman potential and Kratzer potential. The energy eigenvalues and corresponding wavefunction are calculated via the formula method. We applied our results to evaluate thermodynamic functions such as vibrational free energy, F, vibrational internal energy, U, vibrational entropy, S, and vibrational specific heat, C. We also reported special cases of importance. Elsevier 2021-12-17 /pmc/articles/PMC8695294/ /pubmed/34988316 http://dx.doi.org/10.1016/j.heliyon.2021.e08617 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Onyenegecha, C.P. El Anouz, Khadija Opara, A.I. Njoku, I.J. Okereke, C.J. El Allati, A. Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties |
title | Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties |
title_full | Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties |
title_fullStr | Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties |
title_full_unstemmed | Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties |
title_short | Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties |
title_sort | nonrelativistic treatment of inversely quadratic hellmann-kratzer potential and thermodynamic properties |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695294/ https://www.ncbi.nlm.nih.gov/pubmed/34988316 http://dx.doi.org/10.1016/j.heliyon.2021.e08617 |
work_keys_str_mv | AT onyenegechacp nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties AT elanouzkhadija nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties AT oparaai nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties AT njokuij nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties AT okerekecj nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties AT elallatia nonrelativistictreatmentofinverselyquadratichellmannkratzerpotentialandthermodynamicproperties |