Cargando…
Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties
The study presents approximate analytical solutions of the Schrödinger equation with a newly proposed potential model called Inversely Quadratic Hellmann-Kratzer potential (IQHKP). This potential is a superposition of Inversely Quadratic Hellman potential and Kratzer potential. The energy eigenvalue...
Autores principales: | Onyenegecha, C.P., El Anouz, Khadija, Opara, A.I., Njoku, I.J., Okereke, C.J., El Allati, A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695294/ https://www.ncbi.nlm.nih.gov/pubmed/34988316 http://dx.doi.org/10.1016/j.heliyon.2021.e08617 |
Ejemplares similares
-
Dirac equation and thermodynamic properties with the Modified Kratzer potential
por: Onyenegecha, C.P., et al.
Publicado: (2021) -
Nonrelativistic solutions of Schrödinger equation and thermodynamic properties with the proposed modified Mobius square plus Eckart potential
por: Onyenegecha, C.P., et al.
Publicado: (2022) -
Phonon-Assisted Tunneling through Quantum Dot Systems Connected to Majorana Bound States
por: Máthé, Levente, et al.
Publicado: (2023) -
Annihilation of nonrelativistic antiprotons
por: Dalkarov, O D, et al.
Publicado: (1983) -
Nonrelativistic mechanics
por: Finkelstein, Robert J
Publicado: (1973)