Cargando…
Modeling of nitrogen solubility in normal alkanes using machine learning methods compared with cubic and PC-SAFT equations of state
Accurate prediction of the solubility of gases in hydrocarbons is a crucial factor in designing enhanced oil recovery (EOR) operations by gas injection as well as separation, and chemical reaction processes in a petroleum refinery. In this work, nitrogen (N(2)) solubility in normal alkanes as the ma...
Autores principales: | Madani, Seyed Ali, Mohammadi, Mohammad-Reza, Atashrouz, Saeid, Abedi, Ali, Hemmati-Sarapardeh, Abdolhossein, Mohaddespour, Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695585/ https://www.ncbi.nlm.nih.gov/pubmed/34937872 http://dx.doi.org/10.1038/s41598-021-03643-8 |
Ejemplares similares
-
Modeling the solubility of light hydrocarbon gases and their mixture in brine with machine learning and equations of state
por: Mohammadi, Mohammad-Reza, et al.
Publicado: (2022) -
Solubility of gaseous hydrocarbons in ionic liquids using equations of state and machine learning approaches
por: Nakhaei-Kohani, Reza, et al.
Publicado: (2022) -
Modeling of H(2)S solubility in ionic liquids: comparison of white-box machine learning, deep learning and ensemble learning approaches
por: Mousavi, Seyed-Pezhman, et al.
Publicado: (2023) -
Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state
por: Mohammadi, Mohammad-Reza, et al.
Publicado: (2021) -
Insights into modeling refractive index of ionic liquids using chemical structure-based machine learning methods
por: Esmaeili, Ali, et al.
Publicado: (2023)