Cargando…

Synthesis of Gd/N co-doped ZnO for enhanced UV-vis and direct solar-light-driven photocatalytic degradation

The construction of a UV-Vis and direct sunlight functioning photocatalyst is a puzzling task for organic pollutant removal. Herein, we have fabricated Gd/N co-doped ZnO nanoparticles for the first-time using a simple co-precipitation method for photocatalytic degradation application. The heteroatom...

Descripción completa

Detalles Bibliográficos
Autores principales: Alanazi, Hamdah S., Ahmad, Naushad, Alharthi, Fahad A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695734/
https://www.ncbi.nlm.nih.gov/pubmed/35423487
http://dx.doi.org/10.1039/d0ra10698d
Descripción
Sumario:The construction of a UV-Vis and direct sunlight functioning photocatalyst is a puzzling task for organic pollutant removal. Herein, we have fabricated Gd/N co-doped ZnO nanoparticles for the first-time using a simple co-precipitation method for photocatalytic degradation application. The heteroatom doping enhances the light absorption ability and acts as a photo-induced electron–hole separator by creating a trap state. Co-doped ZnO shows comparatively high photocatalytic degradation efficiency of about 87% and 93% under UV-Vis and direct solar light respectively. Moreover, the prepared photocatalyst exhibits excellent stability for the recycling process. Hence, we believe that this heteroatom co-doped ZnO photocatalyst is an auspicious material for the photocatalytic organic pollutant degradation reaction.