Cargando…
Deep-Learning Approach to Predict Survival Outcomes Using Wearable Actigraphy Device Among End-Stage Cancer Patients
Survival prediction is highly valued in end-of-life care clinical practice, and patient performance status evaluation stands as a predominant component in survival prognostication. While current performance status evaluation tools are limited to their subjective nature, the advent of wearable techno...
Autores principales: | Yang, Tien Yun, Kuo, Pin-Yu, Huang, Yaoru, Lin, Hsiao-Wei, Malwade, Shwetambara, Lu, Long-Sheng, Tsai, Lung-Wen, Syed-Abdul, Shabbir, Sun, Chia-Wei, Chiou, Jeng-Fong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695752/ https://www.ncbi.nlm.nih.gov/pubmed/34957004 http://dx.doi.org/10.3389/fpubh.2021.730150 |
Ejemplares similares
-
A Scoping Review to Assess Adherence to and Clinical Outcomes of Wearable Devices in the Cancer Population
por: Huang, Yaoru, et al.
Publicado: (2022) -
Exploring the Potential Use of Wearable Devices as a Prognostic Tool among Patients in Hospice Care
por: Huang, Yaoru, et al.
Publicado: (2022) -
COVID-19 preventive measures showing an unintended decline in infectious diseases in Taiwan
por: Galvin, Cooper J., et al.
Publicado: (2020) -
Accelerating digital health literacy for the treatment of growth disorders: The impact of a massive open online course
por: Dimitri, Paul, et al.
Publicado: (2023) -
Deep Learning Prediction Model for Patient Survival Outcomes in Palliative Care Using Actigraphy Data and Clinical Information
por: Huang, Yaoru, et al.
Publicado: (2023)