Cargando…
Mapping the BCPNN Learning Rule to a Memristor Model
The Bayesian Confidence Propagation Neural Network (BCPNN) has been implemented in a way that allows mapping to neural and synaptic processes in the human cortexandhas been used extensively in detailed spiking models of cortical associative memory function and recently also for machine learning appl...
Autores principales: | Wang, Deyu, Xu, Jiawei, Stathis, Dimitrios, Zhang, Lianhao, Li, Feng, Lansner, Anders, Hemani, Ahmed, Yang, Yu, Herman, Pawel, Zou, Zhuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695980/ https://www.ncbi.nlm.nih.gov/pubmed/34955716 http://dx.doi.org/10.3389/fnins.2021.750458 |
Ejemplares similares
-
Optimizing BCPNN Learning Rule for Memory Access
por: Yang, Yu, et al.
Publicado: (2020) -
Reducing the computational footprint for real-time BCPNN learning
por: Vogginger, Bernhard, et al.
Publicado: (2015) -
Implementation of a spike-based perceptron learning rule using TiO(2−x) memristors
por: Mostafa, Hesham, et al.
Publicado: (2015) -
Map Formation in the Olfactory Bulb by Axon Guidance of Olfactory Neurons
por: Auffarth, Benjamin, et al.
Publicado: (2011) -
STDP and STDP variations with memristors for spiking neuromorphic learning systems
por: Serrano-Gotarredona, T., et al.
Publicado: (2013)