Cargando…
Learning sparse log-ratios for high-throughput sequencing data
MOTIVATION: The automatic discovery of sparse biomarkers that are associated with an outcome of interest is a central goal of bioinformatics. In the context of high-throughput sequencing (HTS) data, and compositional data (CoDa) more generally, an important class of biomarkers are the log-ratios bet...
Autores principales: | Gordon-Rodriguez, Elliott, Quinn, Thomas P, Cunningham, John P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696089/ https://www.ncbi.nlm.nih.gov/pubmed/34498030 http://dx.doi.org/10.1093/bioinformatics/btab645 |
Ejemplares similares
-
The limits of log-ratios
por: Sharov, Vasily, et al.
Publicado: (2004) -
Super-sparse principal component analyses for high-throughput genomic data
por: Lee, Donghwan, et al.
Publicado: (2010) -
Error Propagation in Isometric Log-ratio
Coordinates for Compositional Data: Theoretical and Practical
Considerations
por: Mert, Mehmet Can, et al.
Publicado: (2016) -
A zero inflated log-normal model for inference of sparse microbial association networks
por: Prost, Vincent, et al.
Publicado: (2021) -
Performance of Firth-and logF-type penalized methods in risk prediction for small or sparse binary data
por: Rahman, M. Shafiqur, et al.
Publicado: (2017)