Cargando…
Inferring causality in biological oscillators
MOTIVATION: Fundamental to biological study is identifying regulatory interactions. The recent surge in time-series data collection in biology provides a unique opportunity to infer regulations computationally. However, when components oscillate, model-free inference methods, while easily implemente...
Autores principales: | Tyler, Jonathan, Forger, Daniel, Kim, Jae Kyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696107/ https://www.ncbi.nlm.nih.gov/pubmed/34463706 http://dx.doi.org/10.1093/bioinformatics/btab623 |
Ejemplares similares
-
Macroscopic models for networks of coupled biological oscillators
por: Hannay, Kevin M., et al.
Publicado: (2018) -
Filtering and inference for stochastic oscillators with distributed delays
por: Calderazzo, Silvia, et al.
Publicado: (2019) -
Machine Learning for Causal Inference in Biological Networks: Perspectives of This Challenge
por: Lecca, Paola
Publicado: (2021) -
Elastic-Net Copula Granger Causality for Inference of Biological Networks
por: Furqan, Mohammad Shaheryar, et al.
Publicado: (2016) -
Causal Inference in the Perception of Verticality
por: de Winkel, Ksander N., et al.
Publicado: (2018)