Cargando…
Novel strategy for disease risk prediction incorporating predicted gene expression and DNA methylation data: a multi‐phased study of prostate cancer
BACKGROUND: DNA methylation and gene expression are known to play important roles in the etiology of human diseases such as prostate cancer (PCa). However, it has not yet been possible to incorporate information of DNA methylation and gene expression into polygenic risk scores (PRSs). Here, we aimed...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696216/ https://www.ncbi.nlm.nih.gov/pubmed/34520132 http://dx.doi.org/10.1002/cac2.12205 |
_version_ | 1784619758139736064 |
---|---|
author | Wu, Chong Zhu, Jingjing King, Austin Tong, Xiaoran Lu, Qing Park, Jong Y. Wang, Liang Gao, Guimin Deng, Hong‐Wen Yang, Yaohua Knudsen, Karen E. Rebbeck, Timothy R. Long, Jirong Zheng, Wei Pan, Wei Conti, David V. Haiman, Christopher A Wu, Lang |
author_facet | Wu, Chong Zhu, Jingjing King, Austin Tong, Xiaoran Lu, Qing Park, Jong Y. Wang, Liang Gao, Guimin Deng, Hong‐Wen Yang, Yaohua Knudsen, Karen E. Rebbeck, Timothy R. Long, Jirong Zheng, Wei Pan, Wei Conti, David V. Haiman, Christopher A Wu, Lang |
author_sort | Wu, Chong |
collection | PubMed |
description | BACKGROUND: DNA methylation and gene expression are known to play important roles in the etiology of human diseases such as prostate cancer (PCa). However, it has not yet been possible to incorporate information of DNA methylation and gene expression into polygenic risk scores (PRSs). Here, we aimed to develop and validate an improved PRS for PCa risk by incorporating genetically predicted gene expression and DNA methylation, and other genomic information using an integrative method. METHODS: Using data from the PRACTICAL consortium, we derived multiple sets of genetic scores, including those based on available single‐nucleotide polymorphisms through widely used methods of pruning and thresholding, LDpred, LDpred‐funt, AnnoPred, and EBPRS, as well as PRS constructed using the genetically predicted gene expression and DNA methylation through a revised pruning and thresholding strategy. In the tuning step, using the UK Biobank data (1458 prevalent cases and 1467 controls), we selected PRSs with the best performance. Using an independent set of data from the UK Biobank, we developed an integrative PRS combining information from individual scores. Furthermore, in the testing step, we tested the performance of the integrative PRS in another independent set of UK Biobank data of incident cases and controls. RESULTS: Our constructed PRS had improved performance (C statistics: 76.1%) over PRSs constructed by individual benchmark methods (from 69.6% to 74.7%). Furthermore, our new PRS had much higher risk assessment power than family history. The overall net reclassification improvement was 69.0% by adding PRS to the baseline model compared with 12.5% by adding family history. CONCLUSIONS: We developed and validated a new PRS which may improve the utility in predicting the risk of developing PCa. Our innovative method can also be applied to other human diseases to improve risk prediction across multiple outcomes. |
format | Online Article Text |
id | pubmed-8696216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86962162022-01-04 Novel strategy for disease risk prediction incorporating predicted gene expression and DNA methylation data: a multi‐phased study of prostate cancer Wu, Chong Zhu, Jingjing King, Austin Tong, Xiaoran Lu, Qing Park, Jong Y. Wang, Liang Gao, Guimin Deng, Hong‐Wen Yang, Yaohua Knudsen, Karen E. Rebbeck, Timothy R. Long, Jirong Zheng, Wei Pan, Wei Conti, David V. Haiman, Christopher A Wu, Lang Cancer Commun (Lond) Original Articles BACKGROUND: DNA methylation and gene expression are known to play important roles in the etiology of human diseases such as prostate cancer (PCa). However, it has not yet been possible to incorporate information of DNA methylation and gene expression into polygenic risk scores (PRSs). Here, we aimed to develop and validate an improved PRS for PCa risk by incorporating genetically predicted gene expression and DNA methylation, and other genomic information using an integrative method. METHODS: Using data from the PRACTICAL consortium, we derived multiple sets of genetic scores, including those based on available single‐nucleotide polymorphisms through widely used methods of pruning and thresholding, LDpred, LDpred‐funt, AnnoPred, and EBPRS, as well as PRS constructed using the genetically predicted gene expression and DNA methylation through a revised pruning and thresholding strategy. In the tuning step, using the UK Biobank data (1458 prevalent cases and 1467 controls), we selected PRSs with the best performance. Using an independent set of data from the UK Biobank, we developed an integrative PRS combining information from individual scores. Furthermore, in the testing step, we tested the performance of the integrative PRS in another independent set of UK Biobank data of incident cases and controls. RESULTS: Our constructed PRS had improved performance (C statistics: 76.1%) over PRSs constructed by individual benchmark methods (from 69.6% to 74.7%). Furthermore, our new PRS had much higher risk assessment power than family history. The overall net reclassification improvement was 69.0% by adding PRS to the baseline model compared with 12.5% by adding family history. CONCLUSIONS: We developed and validated a new PRS which may improve the utility in predicting the risk of developing PCa. Our innovative method can also be applied to other human diseases to improve risk prediction across multiple outcomes. John Wiley and Sons Inc. 2021-09-14 /pmc/articles/PMC8696216/ /pubmed/34520132 http://dx.doi.org/10.1002/cac2.12205 Text en © 2021 The Authors. Cancer Communications published by John Wiley & Sons Australia, Ltd on behalf of Sun Yat‐sen University Cancer Center. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Wu, Chong Zhu, Jingjing King, Austin Tong, Xiaoran Lu, Qing Park, Jong Y. Wang, Liang Gao, Guimin Deng, Hong‐Wen Yang, Yaohua Knudsen, Karen E. Rebbeck, Timothy R. Long, Jirong Zheng, Wei Pan, Wei Conti, David V. Haiman, Christopher A Wu, Lang Novel strategy for disease risk prediction incorporating predicted gene expression and DNA methylation data: a multi‐phased study of prostate cancer |
title | Novel strategy for disease risk prediction incorporating predicted gene expression and DNA methylation data: a multi‐phased study of prostate cancer |
title_full | Novel strategy for disease risk prediction incorporating predicted gene expression and DNA methylation data: a multi‐phased study of prostate cancer |
title_fullStr | Novel strategy for disease risk prediction incorporating predicted gene expression and DNA methylation data: a multi‐phased study of prostate cancer |
title_full_unstemmed | Novel strategy for disease risk prediction incorporating predicted gene expression and DNA methylation data: a multi‐phased study of prostate cancer |
title_short | Novel strategy for disease risk prediction incorporating predicted gene expression and DNA methylation data: a multi‐phased study of prostate cancer |
title_sort | novel strategy for disease risk prediction incorporating predicted gene expression and dna methylation data: a multi‐phased study of prostate cancer |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696216/ https://www.ncbi.nlm.nih.gov/pubmed/34520132 http://dx.doi.org/10.1002/cac2.12205 |
work_keys_str_mv | AT wuchong novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT zhujingjing novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT kingaustin novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT tongxiaoran novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT luqing novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT parkjongy novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT wangliang novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT gaoguimin novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT denghongwen novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT yangyaohua novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT knudsenkarene novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT rebbecktimothyr novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT longjirong novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT zhengwei novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT panwei novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT contidavidv novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT haimanchristophera novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer AT wulang novelstrategyfordiseaseriskpredictionincorporatingpredictedgeneexpressionanddnamethylationdataamultiphasedstudyofprostatecancer |