Cargando…
Machine learning approach to predicting albuminuria in persons with type 2 diabetes: An analysis of the LOOK AHEAD Cohort
Albuminuria and estimated glomerular filtration rate (e‐GFR) are early markers of renal disease and cardiovascular outcomes in persons with diabetes. Although body composition has been shown to predict systolic blood pressure, its application in predicting albuminuria is unknown. In this study, we h...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696217/ https://www.ncbi.nlm.nih.gov/pubmed/34847294 http://dx.doi.org/10.1111/jch.14397 |
_version_ | 1784619758374617088 |
---|---|
author | Khitan, Zeid Nath, Tanmay Santhanam, Prasanna |
author_facet | Khitan, Zeid Nath, Tanmay Santhanam, Prasanna |
author_sort | Khitan, Zeid |
collection | PubMed |
description | Albuminuria and estimated glomerular filtration rate (e‐GFR) are early markers of renal disease and cardiovascular outcomes in persons with diabetes. Although body composition has been shown to predict systolic blood pressure, its application in predicting albuminuria is unknown. In this study, we have used machine learning methods to assess the risk of albuminuria in persons with diabetes using body composition and other determinants of metabolic health. This study is a comparative analysis of the different methods to predict albuminuria in persons with diabetes mellitus who are older than 40 years of age, using the LOOK AHEAD study cohort‐baseline characteristics. Age, different metrics of body composition, duration of diabetes, hemoglobin A1c, serum creatinine, serum triglycerides, serum cholesterol, serum HDL, serum LDL, maximum exercise capacity, systolic blood pressure, diastolic blood pressure, and the ankle‐brachial index are used as predictors of albuminuria. We used Area under the curve (AUC) as a metric to compare the classification results of different algorithms, and we show that AUC for the different models are as follows: Random forest classifier‐0.65, gradient boost classifier‐0.61, logistic regression‐0.66, support vector classifier ‐0.61, multilayer perceptron ‐0.67, and stacking classifier‐0.62. We used the Random forest model to show that the duration of diabetes, A1C, serum triglycerides, SBP, Maximum exercise Capacity, serum creatinine, subtotal lean mass, DBP, and subtotal fat mass are important features for the classification of albuminuria. In summary, when applied to metabolic imaging (using DXA), machine learning techniques offer unique insights into the risk factors that determine the development of albuminuria in diabetes. |
format | Online Article Text |
id | pubmed-8696217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86962172021-12-23 Machine learning approach to predicting albuminuria in persons with type 2 diabetes: An analysis of the LOOK AHEAD Cohort Khitan, Zeid Nath, Tanmay Santhanam, Prasanna J Clin Hypertens (Greenwich) Short Research Articles Albuminuria and estimated glomerular filtration rate (e‐GFR) are early markers of renal disease and cardiovascular outcomes in persons with diabetes. Although body composition has been shown to predict systolic blood pressure, its application in predicting albuminuria is unknown. In this study, we have used machine learning methods to assess the risk of albuminuria in persons with diabetes using body composition and other determinants of metabolic health. This study is a comparative analysis of the different methods to predict albuminuria in persons with diabetes mellitus who are older than 40 years of age, using the LOOK AHEAD study cohort‐baseline characteristics. Age, different metrics of body composition, duration of diabetes, hemoglobin A1c, serum creatinine, serum triglycerides, serum cholesterol, serum HDL, serum LDL, maximum exercise capacity, systolic blood pressure, diastolic blood pressure, and the ankle‐brachial index are used as predictors of albuminuria. We used Area under the curve (AUC) as a metric to compare the classification results of different algorithms, and we show that AUC for the different models are as follows: Random forest classifier‐0.65, gradient boost classifier‐0.61, logistic regression‐0.66, support vector classifier ‐0.61, multilayer perceptron ‐0.67, and stacking classifier‐0.62. We used the Random forest model to show that the duration of diabetes, A1C, serum triglycerides, SBP, Maximum exercise Capacity, serum creatinine, subtotal lean mass, DBP, and subtotal fat mass are important features for the classification of albuminuria. In summary, when applied to metabolic imaging (using DXA), machine learning techniques offer unique insights into the risk factors that determine the development of albuminuria in diabetes. John Wiley and Sons Inc. 2021-11-30 /pmc/articles/PMC8696217/ /pubmed/34847294 http://dx.doi.org/10.1111/jch.14397 Text en © 2021 The Authors. The Journal of Clinical Hypertension published by Wiley Periodicals LLC https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Research Articles Khitan, Zeid Nath, Tanmay Santhanam, Prasanna Machine learning approach to predicting albuminuria in persons with type 2 diabetes: An analysis of the LOOK AHEAD Cohort |
title | Machine learning approach to predicting albuminuria in persons with type 2 diabetes: An analysis of the LOOK AHEAD Cohort |
title_full | Machine learning approach to predicting albuminuria in persons with type 2 diabetes: An analysis of the LOOK AHEAD Cohort |
title_fullStr | Machine learning approach to predicting albuminuria in persons with type 2 diabetes: An analysis of the LOOK AHEAD Cohort |
title_full_unstemmed | Machine learning approach to predicting albuminuria in persons with type 2 diabetes: An analysis of the LOOK AHEAD Cohort |
title_short | Machine learning approach to predicting albuminuria in persons with type 2 diabetes: An analysis of the LOOK AHEAD Cohort |
title_sort | machine learning approach to predicting albuminuria in persons with type 2 diabetes: an analysis of the look ahead cohort |
topic | Short Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696217/ https://www.ncbi.nlm.nih.gov/pubmed/34847294 http://dx.doi.org/10.1111/jch.14397 |
work_keys_str_mv | AT khitanzeid machinelearningapproachtopredictingalbuminuriainpersonswithtype2diabetesananalysisofthelookaheadcohort AT nathtanmay machinelearningapproachtopredictingalbuminuriainpersonswithtype2diabetesananalysisofthelookaheadcohort AT santhanamprasanna machinelearningapproachtopredictingalbuminuriainpersonswithtype2diabetesananalysisofthelookaheadcohort |