Cargando…

Omics era in type 2 diabetes: From childhood to adulthood

Parallel to the dramatic rise of pediatric obesity, estimates reported an increased prevalence of type 2 diabetes (T2D) already in childhood. The close relationship between obesity and T2D in children is mainly sustained by insulin resistance (IR). In addition, the cardiometabolic burden of T2D incl...

Descripción completa

Detalles Bibliográficos
Autores principales: Passaro, Antonio Paride, Marzuillo, Pierluigi, Guarino, Stefano, Scaglione, Federica, Miraglia del Giudice, Emanuele, Di Sessa, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696648/
https://www.ncbi.nlm.nih.gov/pubmed/35047117
http://dx.doi.org/10.4239/wjd.v12.i12.2027
Descripción
Sumario:Parallel to the dramatic rise of pediatric obesity, estimates reported an increased prevalence of type 2 diabetes (T2D) already in childhood. The close relationship between obesity and T2D in children is mainly sustained by insulin resistance (IR). In addition, the cardiometabolic burden of T2D including nonalcoholic fatty liver disease, cardiovascular disease and metabolic syndrome is also strictly related to IR. Although T2D pathophysiology has been largely studied in an attempt to improve therapeutic options, molecular mechanisms are still not fully elucidated. In this perspective, omics approaches (including lipidomics, metabolomics, proteomics and metagenomics) are providing the most attractive therapeutic options for T2D. In particular, distinct both lipids and metabolites are emerging as potential therapeutic tools. Of note, among lipid classes, the pathogenic role of ceramides in T2D context has been supported by several data. Thus, selective changes of ceramides expression might represent innovative therapeutic strategies for T2D treatment. More, distinct metabolomics pathways have been also found to be associated with higher T2D risk, by providing novel potential T2D biomarkers. Taken together, omics data are responsible for the expanding knowledge of T2D pathophysiology, by providing novel insights to improve therapeutic strategies for this tangled disease. We aimed to summarize the most recent evidence in the intriguing field of the omics approaches in T2D both in adults and children.