Cargando…

Stacking effects in van der Waals heterostructures of blueP and Janus XYO (X = Ti, Zr, Hf: Y = S, Se) monolayers

Using first-principles calculations, the geometry, electronic structure, optical and photocatalytic performance of blueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers and their corresponding van der Waal heterostructures in three possible stacking patterns, are investigated. BlueP and XYO (X = Ti,...

Descripción completa

Detalles Bibliográficos
Autores principales: Alam, Qaisar, Idrees, M., Muhammad, S., Nguyen, Chuong V., Shafiq, M., Saeed, Y., Din, H. U., Amin, B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696924/
https://www.ncbi.nlm.nih.gov/pubmed/35423756
http://dx.doi.org/10.1039/d0ra10827h
_version_ 1784619928906629120
author Alam, Qaisar
Idrees, M.
Muhammad, S.
Nguyen, Chuong V.
Shafiq, M.
Saeed, Y.
Din, H. U.
Amin, B.
author_facet Alam, Qaisar
Idrees, M.
Muhammad, S.
Nguyen, Chuong V.
Shafiq, M.
Saeed, Y.
Din, H. U.
Amin, B.
author_sort Alam, Qaisar
collection PubMed
description Using first-principles calculations, the geometry, electronic structure, optical and photocatalytic performance of blueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers and their corresponding van der Waal heterostructures in three possible stacking patterns, are investigated. BlueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers are indirect bandgap semiconductors. A tensile strain of 8(10)% leads to TiSeO(ZrSeO) monolayers transitioning to a direct bandgap of 1.30(1.61) eV. The calculated binding energy and AIMD simulation show that unstrained(strained) blueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers and their heterostructures are thermodynamically stable. Similar to the corresponding monolayers, blueP-XYO (X = Ti, Zr, Hf: Y = S, Se) vdW heterostructures in three possible stacking patterns are indirect bandgap semiconductors with staggered band alignment, except blueP-TiSeO vdW heterostructure, which signifies straddling band alignment. Absorption spectra show that optical transitions are dominated by excitons for blueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers and the corresponding vdW heterostructures. Both E(VB) and E(CB) in TiSO, ZrSO, ZrSeO and HfSO monolayers achieve energetically favorable positions, and therefore, are suitable for water splitting at pH = 0, while TiSeO and HfSeO monolayers showed good response for reduction and fail to oxidise water. All studied vdW heterostructures also show good response to any produced O(2), while specific stacking reduces H(+) to H(2).
format Online
Article
Text
id pubmed-8696924
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-86969242022-04-13 Stacking effects in van der Waals heterostructures of blueP and Janus XYO (X = Ti, Zr, Hf: Y = S, Se) monolayers Alam, Qaisar Idrees, M. Muhammad, S. Nguyen, Chuong V. Shafiq, M. Saeed, Y. Din, H. U. Amin, B. RSC Adv Chemistry Using first-principles calculations, the geometry, electronic structure, optical and photocatalytic performance of blueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers and their corresponding van der Waal heterostructures in three possible stacking patterns, are investigated. BlueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers are indirect bandgap semiconductors. A tensile strain of 8(10)% leads to TiSeO(ZrSeO) monolayers transitioning to a direct bandgap of 1.30(1.61) eV. The calculated binding energy and AIMD simulation show that unstrained(strained) blueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers and their heterostructures are thermodynamically stable. Similar to the corresponding monolayers, blueP-XYO (X = Ti, Zr, Hf: Y = S, Se) vdW heterostructures in three possible stacking patterns are indirect bandgap semiconductors with staggered band alignment, except blueP-TiSeO vdW heterostructure, which signifies straddling band alignment. Absorption spectra show that optical transitions are dominated by excitons for blueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers and the corresponding vdW heterostructures. Both E(VB) and E(CB) in TiSO, ZrSO, ZrSeO and HfSO monolayers achieve energetically favorable positions, and therefore, are suitable for water splitting at pH = 0, while TiSeO and HfSeO monolayers showed good response for reduction and fail to oxidise water. All studied vdW heterostructures also show good response to any produced O(2), while specific stacking reduces H(+) to H(2). The Royal Society of Chemistry 2021-03-25 /pmc/articles/PMC8696924/ /pubmed/35423756 http://dx.doi.org/10.1039/d0ra10827h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Alam, Qaisar
Idrees, M.
Muhammad, S.
Nguyen, Chuong V.
Shafiq, M.
Saeed, Y.
Din, H. U.
Amin, B.
Stacking effects in van der Waals heterostructures of blueP and Janus XYO (X = Ti, Zr, Hf: Y = S, Se) monolayers
title Stacking effects in van der Waals heterostructures of blueP and Janus XYO (X = Ti, Zr, Hf: Y = S, Se) monolayers
title_full Stacking effects in van der Waals heterostructures of blueP and Janus XYO (X = Ti, Zr, Hf: Y = S, Se) monolayers
title_fullStr Stacking effects in van der Waals heterostructures of blueP and Janus XYO (X = Ti, Zr, Hf: Y = S, Se) monolayers
title_full_unstemmed Stacking effects in van der Waals heterostructures of blueP and Janus XYO (X = Ti, Zr, Hf: Y = S, Se) monolayers
title_short Stacking effects in van der Waals heterostructures of blueP and Janus XYO (X = Ti, Zr, Hf: Y = S, Se) monolayers
title_sort stacking effects in van der waals heterostructures of bluep and janus xyo (x = ti, zr, hf: y = s, se) monolayers
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696924/
https://www.ncbi.nlm.nih.gov/pubmed/35423756
http://dx.doi.org/10.1039/d0ra10827h
work_keys_str_mv AT alamqaisar stackingeffectsinvanderwaalsheterostructuresofbluepandjanusxyoxtizrhfyssemonolayers
AT idreesm stackingeffectsinvanderwaalsheterostructuresofbluepandjanusxyoxtizrhfyssemonolayers
AT muhammads stackingeffectsinvanderwaalsheterostructuresofbluepandjanusxyoxtizrhfyssemonolayers
AT nguyenchuongv stackingeffectsinvanderwaalsheterostructuresofbluepandjanusxyoxtizrhfyssemonolayers
AT shafiqm stackingeffectsinvanderwaalsheterostructuresofbluepandjanusxyoxtizrhfyssemonolayers
AT saeedy stackingeffectsinvanderwaalsheterostructuresofbluepandjanusxyoxtizrhfyssemonolayers
AT dinhu stackingeffectsinvanderwaalsheterostructuresofbluepandjanusxyoxtizrhfyssemonolayers
AT aminb stackingeffectsinvanderwaalsheterostructuresofbluepandjanusxyoxtizrhfyssemonolayers