Cargando…

Synthesis of some new distyrylbenzene derivatives using immobilized Pd on an NHC-functionalized MIL-101(Cr) catalyst: photophysical property evaluation, DFT and TD-DFT calculations

In this study the catalytic application of a heterogeneous Pd-catalyst system based on metal organic framework [Pd–NHC–MIL-101(Cr)] was investigated in the synthesis of distyrylbenzene derivatives using the Heck reaction. The Pd–NHC–MIL-101(Cr) catalyst showed high efficiency in the synthesis of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Niknam, Esmaeil, Mahmoodi, Ali, Panahi, Farhad, Heydari Dokoohaki, Maryam, Zolghadr, Amin Reza, Khalafi-Nezhad, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696979/
https://www.ncbi.nlm.nih.gov/pubmed/35423731
http://dx.doi.org/10.1039/d1ra00457c
Descripción
Sumario:In this study the catalytic application of a heterogeneous Pd-catalyst system based on metal organic framework [Pd–NHC–MIL-101(Cr)] was investigated in the synthesis of distyrylbenzene derivatives using the Heck reaction. The Pd–NHC–MIL-101(Cr) catalyst showed high efficiency in the synthesis of these π-conjugated materials and products were obtained in high yields with low Pd-contamination based on ICP analysis. The photophysical behaviors for some of the synthesized distyrylbenzene derivatives were evaluated. The DFT and TD-DFT methods were employed to determine the optimized molecular geometry, band gap energy, and the electronic absorption and emission wavelengths of the new synthesized donor–π–acceptor (D–π–A) molecules in the gas phase and in various solvents using the chemical model B3LYP/6-31+G(d,p) level of theory.